Множество значений функции f x. Функция. Область определения и область значений функции. Графики функции. Способы задания функции

Зависимость одной переменной от другой называется функциональной зависимостью. Зависимость переменной y от переменной x называется функцией , если каждому значению x соответствует единственное значение y .

Обозначение:

Переменную x называют независимой переменной или аргументом , а переменную y - зависимой. Говорят, что y является функцией от x . Значение y , соответствующее заданному значению x , называют значением функции .

Все значения, которые принимает x , образуют область определения функции ; все значения, которые принимает y , образуют множество значений функции .

Обозначения:

D(f) - значения аргумента. E(f) - значения функции. Если функция задана формулой, то считают, что область определения состоит из всех значений переменной, при которых эта формула имеет смысл.

Графиком функции называется множество всех точек на координатной плоскости , абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции. Если некоторому значению x=x 0 соответствуют несколько значений (а не одно) y , то такое соответствие не является функцией. Для того чтобы множество точек координатной плоскости являлось графиком некоторой функции, необходимо и достаточно, чтобы любая прямая параллельная оси Оу, пересекалась с графиком не более чем в одной точке.

Способы задания функции

1) Функция может быть задана аналитически в виде формулы. Например,

2) Функция может быть задана таблицей из множества пар (x; y) .

3) Функция может быть задана графически. Пары значений (x; y) изображаются на координатной плоскости.

Монотонность функции

Функция f(x) называется возрастающей на данном числовом промежутке, если большему значению аргумента соответствует большее значение функции. Представьте, что некоторая точка движется по графику слева направо. Тогда точка будет как бы "взбираться" вверх по графику.

Функция f(x) называется убывающей на данном числовом промежутке, если большему значению аргумента соответствует меньшее значение функции. Представьте, что некоторая точка движется по графику слева направо. Тогда точка будет как бы "скатываться" вниз по графику.

Функция, только возрастающая или только убывающая на данном числовом промежутке, называется монотонной на этом промежутке.


Нули функции и промежутки знакопостоянства

Значения х , при которых y=0 , называется нулями функции . Это абсциссы точек пересечения графика функции с осью Ох.

Такие промежутки значений x , на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.


Четные и нечетные функции

Четная функция
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x , принадлежащего области определения, выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

Периодические функции

Функция f называется периодической, если существует такое число , что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T) . T - это период функции.

Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.


Страница 1
Занятие 3

«Область значений функции»
Цели:- Применять понятие области значений к решению конкретной задачи;

решение типовых задач.

В течение нескольких лет на экзаменах регулярно появляются за­дачи, в которых из данного семейства функций тре­буется выделить те, чьи множества значений удов­летворяют объявленным условиям.

Рассмотрим такого рода задачи.


  1. Актуализация знаний.
Проводится в форме диалога с учащимися.

Что мы понимаем под множеством значений функции?

Как обозначается множество значений функции?


  • По каким данным мы можем найти множество значений функции? (По аналитической записи функции или ее графику)
- Используя рисунок, по графикам найдите область значений функции.

(см задания ЕГЭ, часть А)


  • Множества значений каких функций мы знаем? (Перечисляются основные функции с записью их на доске; для каждой из функций записывается ее множество значений). В результате на доске и в тетради учащихся

Функция

Множество значений

y = x 2

y = x 3

y = | x |

y =


E(y ) =

E(y ) = [- 1, 1]

E(y ) = (– ∞, + ∞)

E(y ) = (– ∞, + ∞)

E(y ) = (– ∞, + ∞)

E(y ) = (0, + ∞)


  • Можем ли мы, используя эти знания, сразу найти множества значений записанных на доске функций? (см. таблицу 2).

  • Что может помочь в ответе на данный вопрос? (Графики этих функций).

  • Как построить график первой функции? (Опустить параболу на 4 единицы вниз).
Аналогично беседуем по каждой функции из таблицы.

Функция

Множество значений

y = x 2 – 4

E(y ) = [-4, + ∞)

y = + 5

E(y ) =

y = – 5 cos x

E(y ) = [- 5, 5]

y = tg (x + / 6) – 1

E(y ) = (– ∞, + ∞)

y = sin (x + / 3) – 2

E(y ) = [- 3, - 1]

y = | x – 1 | + 3

E(y ) =

y = | ctg x |

E(y ) =

y =
= | cos (x + /4) |

E(y ) =

y = (x – 5) 2 + 3

E(y ) = .
Найдите множество значений функции:


.

Введение алгоритма решения задач на нахождение множества значений тригонометрических функций.

Давайте посмотрим, как мы можем применить имеющийся опыт для решения различных заданий, включаемых в варианты единого экзамена.

1. Нахождение значений функций при заданном значении аргумента.

Пример. Найти значение функции у = 2 cos (π/2+ π/4) – 1, если х = - π/2.

Решение.


y (-π/2) = 2 cos (- π/2 – π/4)- 1= 2 cos (π/2 + π/4)- 1 = - 2 sin π/4 – 1 = - 2
– 1 =

= –
– 1.

2.Нахождение области значений тригонометрических функций


Решение.

1≤ sin х ≤ 1

2 ≤ 2 sin х ≤ 2

9 ≤ 11+2sin х ≤ 13

3 ≤
+2∙ sin х ≤
, т.е. Е (у)= .

Выпишем целые значения функции на промежутке . Это число 3.

Ответ: 3.


  • Найдите множество значений функции у = sin 2 х + 6sin х + 10.

  • Найдите множество значений функции: у = sin 2 х - 6 sin х + 8 . (самостоятельно)
Решение.

у = sin 2 х- 2 3 sin х + 3 2 - 3 2 + 8,

у = (sin х- 3) 2 -1.

Е (sin х ) = [-1;1];

Е (sin х -3) = [-4;-2];

Е (sin х -3) 2 = ;

Е (у ) = .

Ответ: .


  • Найдите наименьшее значение функции у = соs 2 x + 2sin x – 2.
Решение.

Можем ли мы найти множество значений этой функции? (Нет.)

Что нужно сделать? (Свести к одной функции.)

Как это сделать? (Использовать формулу cos 2 x = 1-sin 2 x .)

Итак, у = 1-sin 2 x + 2sin x –2,

y = -sin 2 x + 2sin x –1,

у = -(sin x –1) 2 .

Ну, а теперь мы можем найти множество значений и выбрать из них наименьшее.

1 ≤ sin x ≤ 1,

2 ≤ sin x – 1 ≤ 0,

0 ≤ (sin x – 1) 2 ≤ 4,

4 ≤ -(sin x -1) 2 ≤ 0.

Значит, наименьшее значение функции у наим = –4. Ответ: -4.


  • Найдите произведение наибольшего и наименьшего значений функции
у = sin 2 x + cos x + 1,5.

Решение.

у = 1-cos 2 x + cos x + 1,5,

у = -cos 2 x + 2∙0,5∙cos x - 0,25 + 2,75,

у = -(cos x - 0,5) 2 + 2,75.

Е(cos x ) = [-1;1],

Е(cos x – 0,5) = [-1,5;0,5],

Е(cos x – 0,5) 2 = ,

Е(-(cos x -0,5) 2) = [-2,25;0],

Е(у ) = .

Наибольшее значение функции у наиб = 2,75; наименьшее значение у наим = 0,5. Найдём произведение наибольшего и наименьшего значения функции:

у наиб у наим = 0,5∙2,75 = 1,375.

Ответ: 1,375.



Решение.

Перепишем функцию в виде у =,

у =
,

Найдем теперь множество значений функции.

E(sin x ) = [-1, 1],

E(6sin x ) = [-6, 6],

E(6sin x + 1) = [-5, 7],

E((6sin x + 1) 2) = ,

E(– (6sin x + 1) 2) = [-49, 0],

E(– (6sin x + 1) 2 + 64) = ,

E(y ) = [
, 8].

Найдем сумму целых значений функции: 4 + 5 + 6 + 7 + 8 = 30.

Ответ: 30.



Решение.

1)
то есть х принадлежит I четверти.

2)

Следовательно, 2х принадлежат II четверти.

3) Во II четверти функция синус убывает и непрерывна. Значит, данная функция
принимает все значения от
до

4) Вычислим эти значения:

Ответ:
.




Решение.

1) Так как а синус принимает значения от -1 до 1, то множество значений разности
. При умножении на
этот отрезок перейдет в отрезок
.

2) Арккосинус – монотонно убывающая и непрерывная функция. Значит, множество значений выражения - это отрезок
.

3) При умножении этого отрезка на получим
.

Ответ:
.



Решение.

Так как арктангенс является возрастающей функцией, то
.

2) При возрастании х от
до аргумент 2х возрастает от
до . Так как синус на таком промежутке возрастает, то функция
принимает значения от
до 1.

3) При возрастании от до
аргумент 2х возрастает от до
. Так как синус на таком промежутке убывает, то функция
принимает значения от
до 1.

4) Используя формулу, выражающую синус через тангенс половинного угла, находим, что

.

Значит, искомое множество значений – это объединение отрезков
и
, то есть отрезок
.

Ответ:
.
Данный прием (Введение вспомогательного угла) применяется для нахождения множества значений функций вида

у = a sin x + b cos x или у = a sin (р x) + b cos (р x).


  • Найдите множество значений функции
у = 15 sin 2x + 20 cos 2x.

Решение.

Найдем значение
=
= 25.

Преобразуем выражение

15 sin 2x + 20 cos 2x = 25 (
) = 25 () =

25 sin (2x +), где cos= , sin=.

Множество значений функций у = sin (2x +): -1 sin (2x +) 1.

Тогда множество значений исходной функции -25 25 sin (2x +) 25.

Ответ : [-25; 25].
3. Задания на нахождение наибольшего и наименьшего значения функции на промежутке.


  • Найдите наибольшее и наименьшее значение функции у = сtg х на отрезке [π/4; π/2].
Решение.

Функция у = сtg х является убывающей на отрезке [π/4; π/2], следовательно, наименьшее значение функция будет принимать при х = π/2, то есть у (π/2) = сtg π/2 = 0; а наибольшее значение – при х= π/4, то есть у (π/4) = сtg π/4 = 1.

Ответ: 1, 0.



.
Решение.

Выделим в равенстве
целую часть: .

Отсюда следует, что графиком функции f(x) явля­ется либо гипербола (а≠ 0), либо прямая без точки.

При этом если а; 2а) и (2а;
) и, если а > 0, монотонно возрастает на этих лучах.

Если а = 0, то f(x) = -2 на всей области определе­ния х ≠ 0. Поэтому очевидно, что искомые значения параметра не равняются нулю.

Поскольку нас интересуют значения функции толь­ко на отрезке [-1; 1], то классификация ситуаций определяется тем, что асимптота х = 2а гиперболы (а≠0) располагается относительно этого отрезка.

Случай 1. Все точки промежутка [-1; 1] находят­ся справа от вертикальной асимптоты х = 2а, то есть когда 2а

Случай 2. Вертикальная асимптота пересекает про­межуток [-1; 1], и функция убывает (как и в случае 1), то есть когда

Случай 3. Вертикальная асимптота пересекает про­межуток [-1; 1] и функция возрастает, то есть -1

.

Случай 4. Все точки промежутка [-1; 1] находят­ся слева от вертикальной асимптоты, то есть 1 а > . и второго
Прием 4 . Выражение х через у. (Поиск области определения обратной функции)

Прием 5. Упрощение формулы, задающей дробно-рациональную функцию

Прием 6. Нахождение множества значений квадратичных функций (с помощью нахождения вершины параболы и установления характера поведения её ветвей).

Прием 7. Введение вспомогательного угла для нахождения множества значений некоторых тригонометрических функций.

страница 1

    D(f) - те значения, которые может принимать аргумент, т.е. область определения функции .

    E(f) - те значения, которые может принимать функция, т.е. множество значений функции .

Способы нахождения областей значений функций.

    последовательное нахождение значений сложных аргументов функции;

    метод оценок/границ;

    использование свойств непрерывности и монотонности функции;

    использование производной;

    использование наибольшего и наименьшего значений функции;

    графический метод;

    метод введения параметра;

    метод обратной функции.

Рассмотрим некоторые из них.

Используя производную

Общий подход к нахождению множества значений непрерывной функции f(x) заключается в нахождении наибольшего и наименьшего значения функции f(x) в области ее определения (или в доказательстве того, что одно из них или оба не существуют).

В случае, если нужно найти множества значений функции на отрезке :

    найти производную данной функции f "(x);

    найти критические точки функции f(x) и выбрать те из них, которые принадлежат данному отрезку;

    вычислить значения функции на концах отрезка и в выбранных критических точках;

    среди найденных значений выбрать наименьшее и наибольшее значения;

    Множество значений функции заключить между этими значениями.

Если областью определения функции является интервал , то используется та же схема, но вместо значений на концах используются пределы функции при стремлении аргумента к концам интервала. Значения пределов из не входят в множество значений.

Метод границ/оценок

Для нахождения множества значений функции сначала находят множество значений аргумента, а затем отыскивают соответствующие наименьше и наибольшее значения функции функции. Используя неравенства - определяют границы.

Суть состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Свойства непрерывной функции

Другой вариант заключается в преобразовании функции в непрерывную монотонную, тогда используя свойства неравенств оценивают множество значений вновь полученной функции.

Последовательное нахождение значений сложных аргументов функции

Основан на последовательном отыскании множества значений промежуточных функций, из которых составлена функция

Области значений основных элементарных функций

Функция Множество значений
$y = kx+ b$ E(y) = (-∞;+∞)
$y = x^{2n}$ E(y) =
$y = \cos{x}$ E(y) = [-1;1]
$y = {\rm tg}\, x$ E(y) = (-∞;+∞)
$y = {\rm ctg}\, x$ E(y) = (-∞;+∞)
$y = \arcsin{x}$ E(y) = [-π/2; π/2]
$y = \arccos{x}$ E(y) =
$y = {\rm arctg}\, x$ E(y) = (-π/2; π/2)
$y = {\rm arcctg}\, x$ E(y) = (0; π)

Примеры

Найдите множество значений функции:

Используя производную

Находим область определения: D(f)=[-3;3], т.к. $9-x^{2}\geq 0$

Находим производную: $f"(x)=-\frac{x}{\sqrt{9-x^{2}}}$

f"(x) = 0, если x = 0. f"(x) не существует, если $\sqrt{9-x^{2}}=0$ то есть при x = ±3. Получаем три критические точки: x 1 = –3, x 2 = 0, x 3 = 3, две из которых совпадают с концами отрезка. Вычислим: f(–3) = 0, f(0) = 3, f(3) = 0. Таким образом, наименьшее значение f(x) равно 0, наибольшее значение равно 3.

Ответ: E(f) = .

НЕ используя производную

Найдите наибольшее и наименьшее значения функции:

Так как $
f(x) = 1-\cos^{2}{x}+\cos{x}-\frac{1}{2} =
= 1-\frac{1}{2}+\frac{1}{4}-(\cos^{2}{x}-2\cdot\cos{x}\cdot\frac{1}{2}+(\frac{1}{2})^2) =
= \frac{3}{4}-(\cos{x}-\frac{1}{2})^{2} $ , то:

    $f(x)\leq \frac{3}{4}$ при всех x;

    $f(x)\geq \frac{3}{4}-(\frac{3}{2})^{2}=-\frac{3}{2}$ при всех x(ибо $|\cos{x}|\leq 1$);

    $f(\frac{\pi}{3})= \frac{3}{4}-(\cos{\frac{\pi}{3}}-\frac{1}{2})^{2}=\frac{3}{4}$;

    $f(\pi)= \frac{3}{4}-(\cos{\pi}-\frac{1}{2})^{2}=-\frac{3}{2}$;

Ответ: $\frac{3}{4}$ и $-\frac{3}{2}$

Если решать эту задачу с помощью производных, то потребуется преодолевать препятствия, связанные с тем, что функция f(x) определена не на отрезке, а на всей числовой прямой.

Используя метод границ/оценок

Из определения синуса следует, $-1\leq\sin{x}\leq 1$. Далее воспользуемся свойствами числовых неравенств.

$-4\leq - 4\sin{x}\leq 4$, (умножили все три части двойного неравенства на -4);

$1\leq 5 - 4\sin{x}\leq 9$ (прибавили к трем частям двойного неравенства 5);

Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением на всей области определения, если таковые существуют.

В данном случае множество значений функции $y = 5 - 4\sin{x}$ есть множество .

Из неравенств $$ \\ -1\leq\cos{7x}\leq 1 \\ -5\leq 5\cos{x}\leq 5 $$ получим оценку $$\\ -6\leq y\leq 6$$

При x = р и x = 0 функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы оценки. Как линейная комбинация непрерывных функций cos(7x) и cos(x), функция y непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она принимает все значения с -6 до 6 включительно, и только их, так как в силу неравенств $-6\leq y\leq 6$ другие значения у неё невозможны.

Следовательно, E(y) = [-6;6].

$$ \\ -1\leq\sin{x}\leq 1 \\ 0\leq\sin^{2}{x}\leq 1 \\ 0\leq2\sin^{2}{x}\leq 2 \\ 1\leq1+2\sin^{2}{x}\leq 3 $$ Ответ: E(f) = .

$$ \\ -\infty < {\rm tg}\, x < +\infty \\ 0 \leq {\rm tg}^{2}\, x < +\infty \\ 3 \leq 3+{\rm tg}^{2}\, x < +\infty \\ 2^{3} \leq 2^{3+{\rm tg}^{2}\, x} < +\infty \\ -\infty < -2^{3+{\rm tg}^{2}\, x} \leq -8 \\ -\infty < 3-2^{3+{\rm tg}^{2}\, x} \leq -5 $$ Ответ: E(f) = (–∞; -5].

$$ \\ -\infty < \lg{x} < +\infty \\ 0 \leq \lg^{2}{x} < +\infty \\ -\infty < -\lg^{2}{x} \leq 0 \\ -\infty < 16-\lg^{2}{x} \leq 16 \\ 0 \leq \sqrt{16-\lg^{2}{x}} \leq 4 \\ 2 \leq 2+\sqrt{16-\lg^{2}{x}} \leq 6 $$ Ответ: E(f) = .

Преобразуем выражение $$ \\ \sin{x} + \cos{x} = \sin{x} + \sin(\frac{\pi}{2} - x) = \\ 2\sin\left ({\frac{x + \frac{\pi}{2} - x}{2}} \right)\cos\left ({\frac{x + \frac{\pi}{2} + x}{2}} \right) \\ = 2\sin(\frac{\pi}{4})cos(x +\frac{\pi}{4}) = \sqrt{2}cos(x +\frac{\pi}{4}) $$.

Из определения косинуса следует $$ \\ -1\leq\cos{x}\leq 1; \\ -1\leq \cos{(x + \frac{\pi}{4})}\leq 1; \\ -\sqrt{2}\leq \sqrt{2}\cos{(x +\frac{\pi}{4})}\leq\sqrt{2}; $$

Так какданная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением, если таковые существуют, множество значений функции $y =\sqrt{2}\cos({x +\frac{\pi}{4}})$ есть множество $[-\sqrt{2};\sqrt{2}]$.

$$\\ E(3^{x}) = (0;+∞), \\ E(3^{x}+ 1) = (1;+∞), \\ E(-(3^{x}+ 1)^{2} = (-∞;-1), \\ E(5 – (3^{x}+1)^{2}) = (-∞;4) $$

Обозначим $t = 5 – (3^{x}+1)^{2}$, где -∞≤t≤4. Тем самым задача сводится к нахождению множества значений функции $y = \log_{0,5}{t}$ на луче (-∞;4). Так как функция $y = \log_{0,5}{t}$ определена лишь при t > 0 , то её множество значений на луче (-∞;4) совпадает со множеством значений функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t = 4 принимает значение -2, поэтому E(y) = (-2, +∞).

Используем прием, основанный на графическом изображении функции.

После преобразований функции, имеем: y 2 + x 2 = 25, причем y ≥ 0, |x| ≤ 5.

Следует напомнить, что $x^{2}+y^{2}=r^{2}$ - уравнение окружности радиуса r.

При этих ограничениях графиком данного уравнения является верхняя полуокружность с центром в начале координат и радиусом, равным 5. Очевидно, что E(y) = .

Ответ: E(y) = .

Использованная литература

    Область значения функций в задачах ЕГЭ, Минюк Ирина Борисовна

    Советы по нахождению множества значений функции, Беляева И., Федорова С.

    Нахождение множества значений функции

    Как решать задачи по математике на вступительных экзаменах, И.И.Мельников, И.Н.Сергеев

Понятие функции и всё, что с ним связано, относится к традиционно сложным, не до конца понятым. Особым камнем преткновения при изучении функции и подготовке к ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью её значений.
И если задачи на нахождение области определения функции учащимся удаётся освоить, то задачи на нахождение множества значений функции вызывают у них немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал, рассмотрены способы решения задач на нахождение множеств значений функции, подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к выпускным и вступительным экзаменам, при изучении темы “Область значения функции” на факультативных занятиях элективных курсах по математике.

I. Определение области значений функции.

Областью (множеством) значений E(у) функции y = f(x) называется множество таких чисел y 0 , для каждого из которых найдётся такое число x 0 , что: f(x 0) = y 0 .

Напомним области значений основных элементарных функций.

Рассмотрим таблицу.

Функция Множество значений
y = kx+ b E(y) = (-∞;+∞)
y = x 2n E(y) =
y = cos x E(y) = [-1;1]
y = tg x E(y) = (-∞;+∞)
y = ctg x E(y) = (-∞;+∞)
y = arcsin x E(y) = [-π/2 ; π/2]
y = arcos x E(y) =
y = arctg x E(y) = (-π/2 ; π/2)
y = arcctg x E(y) = (0; π)

Заметим также, что областью значения всякого многочлена чётной степени является промежуток , где n – наибольшее значение этого многочлена.

II. Свойства функций, используемые при нахождении области значений функции

Для успешного нахождения множества значений функции надо хорошо знать свойства основных элементарных функций, особенно их области определения, области значений и характер монотонности. Приведём свойства непрерывных, монотонных дифференцируемых функций, наиболее часто используемые при нахождении множества значений функций.

Свойства 2 и 3, как правило, используются вместе свойством элементарной функции быть непрерывной в своей области определения. При этом наиболее простое и краткое решение задачи на нахождение множества значений функции достигается на основании свойства 1, если несложными методами удаётся определить монотонность функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение множеств значений функции следует по мере надобности проверять и использовать следующие свойства функции:

  • непрерывность;
  • монотонность;
  • дифференцируемость;
  • чётность, нечётность, периодичность и т.д.

Несложные задачи на нахождение множества значений функции в большинстве своём ориентированны:

а) на использование простейших оценок и ограничений: (2 х >0, -1≤sinx?1, 0≤cos 2 x?1 и т.д.);

б) на выделение полного квадрата: х 2 – 4х + 7 = (х – 2) 2 + 3;

в) на преобразование тригонометрических выражений: 2sin 2 x – 3cos 2 x + 4 = 5sin 2 x +1;

г) использование монотонности функции x 1/3 + 2 x-1 возрастает на R.

III. Рассмотрим способы нахождения областей значений функций.

а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.

Раскроем суть этих методов на конкретных примерах.

Пример 1. Найдите область значений E(y) функции y = log 0,5 (4 – 2·3 x – 9 x).

Решим этот пример методом последовательного нахождения значений сложных аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

y = log 0,5 (5 – (1 + 2·3 x – 3 2x)) = log 0,5 (5 – (3 x + 1) 2)

И последовательно найдём множества значений её сложных аргументов:

E(3 x) = (0;+∞), E(3 x + 1) = (1;+∞), E(-(3 x + 1) 2 = (-∞;-1), E(5 – (3 x +1) 2) = (-∞;4)

Обозначим t = 5 – (3 x +1) 2 , где -∞≤t≤4 . Тем самым задача сводится к нахождению множества значений функции y = log 0,5 t на луче (-∞;4) . Так как функция y = log 0,5 t определена лишь при, то её множество значений на луче (-∞;4) совпадает со множеством значений функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t = 4 принимает значение -2, поэтому E(y) = (-2, +∞).

Пример 2. Найдите область значений функции

y = cos7x + 5cosx

Решим этот пример методом оценок, суть которого состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0 функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она принимает все значения с -6 до 6 включительно, и только их, так как в силу неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) = [-6;6].

Пример 3. Найдите область значений E(f) функции f(x) = cos2x + 2cosx.

По формуле косинуса двойного угла преобразуем функция f(x) = 2cos 2 x + 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t 2 + 2t – 1. Так как E(cosx) =

[-1;1], то область значений функции f(x) совпадает со множеством значений функции g(t) = 2t 2 + 2t – 1 на отрезке [-1;1], которое найдём графическим методом. Построив график функции y = 2t 2 + 2t – 1 = 2(t + 0,5) 2 – 1,5 на промежутке [-1;1], находим E(f) = [-1,5; 3].

Замечание – к нахождению множества значений функции сводятся многие задачи с параметром, связанные, в основном, с разрешимостью и числом решений уравнения и неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда, когда

a E(f) Аналогично, уравнение f(x) = а имеет хотя бы один корень, расположенный на некотором промежутке Х, или не имеет ни одного корня на этом промежутке тогда и только тогда, когда а принадлежит или не принадлежит множеству значений функции f(x) на промежутке Х. Также исследуются с привлечением множества значений функции и неравенства f(x)≠ а, f(x)> а и т.д. В частности, f(x)≠ а для всех допустимых значений х, если a E(f)

Пример 4. При каких значениях параметра а уравнение (x + 5) 1/2 = a(x 2 + 4) имеет единственный корень на отрезке [-4;-1].

Запишем уравнение в виде (x + 5) 1/2 / (x 2 + 4) = a . Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только тогда, когда а принадлежит множеству значений функции f(x) = (x + 5) 1/2 / (x 2 + 4) на отрезке [-4;-1]. Найдём это множество, используя свойство непрерывности и монотонности функции.

На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна, поэтому функция g(x) = 1 /(x 2 + 4) непрерывна и возрастает на этом отрезке, так как при делении на положительную функцию характер монотонности функции меняется на противоположный. Функция h(x) = (x + 5) 1/2 непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция f(x)=g(x)·h(x) , как произведение двух непрерывных, возрастающих и положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому её множество значений на [-4;-1] есть отрезок [f(-4); f(-1) ] = . Следовательно, уравнение имеет решение на отрезке [-4;-1], причём единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4

Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х равносильна принадлежности значений параметра а множеству значений функции f(x) на Х. Следовательно, множество значений функции f(x) на промежутке Х совпадает с множеством значений параметра а , для которых уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В частности, область значений E(f) функции f(x) совпадает с множеством значений параметра а , для которых уравнение f(x) = a имеет хотя бы один корень.

Пример 5. Найдите область значений E(f) функции

Решим пример методом введения параметра, согласно которому E(f) совпадает с множеством значений параметра а , для которых уравнение

имеет хотя бы один корень.

При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом при неизвестной х, поэтому имеет решение. При а≠2 уравнение является квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант

Так как точка а = 2 принадлежит отрезку

то искомым множеством значений параметра а, значит, и областью значений E(f) будет весь отрезок.

Как непосредственное развитие метода введения параметра при нахождении множества значений функции, можно рассматривать метод обратной функции, для нахождения которой надо решить относительно х уравнение f(x)= y , считая y параметром. Если это уравнение имеет единственное решение x =g(y) , то область значений E(f) исходной функции f(x) совпадает с областью определения D(g) обратной функции g(y) . Если же уравнение f(x)= y имеет несколько решений x =g 1 (y) , x =g 2 (y) и т.д., то E(f) равна объединению областей определений функции g 1 (y), g 2 (y) и т.д.

Пример 6. Найдите область значений E(y) функции y = 5 2/(1-3x).

Из уравнения

найдём обратную функцию x = log 3 ((log 5 y – 2)/(log 5 y)) и её область определения D(x) :

Так как уравнения относительно х имеет единственное решение, то

E(y) = D(x) = (0; 1)(25;+∞ ).

Если область определения функции состоит из нескольких промежутков или функция на разных промежутках задана разными формулами, то для нахождения области значений функции надо найти множества значений функции на каждом промежутке и взять их объединение.

Пример 7. Найдите области значений f(x) и f(f(x)) , где

f(x) на луче (-∞;1], где она совпадает с выражением 4 x + 9·4 -x + 3. Обозначим t = 4 x . Тогда f(x) = t + 9/t + 3 , где 0 < t ≤ 4 , так как показательная функция непрерывно возрастает на луче (-∞;1] и стремится к нулю при х → -∞. Тем самым множество значений функции f(x) на луче (-∞;1] совпадает с множеством значений функции g(t) = t + 9/t + 3 , на промежутке (0;4], которое найдём, используя производную g’(t) = 1 – 9/t 2 . На промежутке (0;4] производная g’(t) определена и обращается там в нуль при t = 3 . При 0<t <3 она отрицательна, а при 3<t <4 положительна. Следовательно, в интервале (0;3) функция g(t) убывает, а в интервале (3;4) она возрастает, оставаясь непрерывной на всём промежутке (0;4), поэтом g(3)= 9 – наименьшее значений этой функции на промежутке (0;4], в то время как её наибольшее значение не существует, так при t→0 справа функция g(t)→+∞. Тогда, по свойству непрерывной функции, множеством значений функции g(t) на промежутке (0;4], а значит, и множеством значений f(x) на (-∞;-1], будет луч .

Теперь, объединив промежутки – множества значений функции f(f(x)) , обозначим t = f(x) . Тогда f(f(x)) = f(t) , где При указанных t функция f(t) = 2cos(x-1) 1/2 + 7 и она снова принимает все значения от 5 до 9 включительно, т.е. область значений E(fІ) = E(f(f(x))) = .

Аналогично, обозначив z = f(f(x)) , можно найти область значений E(f 3) функции f(f(f(x))) = f(z) , где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f 3) = .

Наиболее универсальным методом нахождения множества значений функции является использование наибольшего и наименьшего значений функции на заданном промежутке.

Пример 8. При каких значениях параметра р неравенcтво 8 x -р ≠ 2 x+1 – 2 x выполняется для всех -1 ≤ x < 2.

Обозначив t = 2 x , запишем неравенство в виде р ≠ t 3 – 2t 2 + t . Так как t = 2 x – непрерывная возрастающая функция на R, то при -1 ≤ x < 2 переменная

2 -1 ≤ t <2 2 ↔

0,5 ≤ t < 4, и исходное неравенство выполняется для всех -1 ≤ x < 2 тогда и только тогда, когда р отлична от значений функции f(t) = t 3 – 2t 2 + t при 0,5 ≤ t < 4.

Найдём сначала множество значений функции f(t) на отрезке , где она всюду имеет производную f’(t) =3t 2 – 4t + 1 . Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке . Из уравнения f’(t) = 0 найдём критические точки функции t = 1/3, t = 1, первая из которых не принадлежит отрезку , а вторая принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение функции f(t) на отрезке . Тогда f(t), как непрерывная функция, принимает на отрезке все значения от 0 до 36 включительно, причём значение 36 принимает только при t = 4 , поэтому при 0,5 ≤ t < 4, она принимает все значения из промежутка . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Мы получили область значений функции арксинуса .

Пример.

Найдите множество значений функции на отрезке .

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку :

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является отрезок .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) промежутках (a; b) , .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Пример.

Определите множество значений функции на интервале (-2; 2) .

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2) :

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при x стремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0 ), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

Пример.

Укажите множество значений функции тангенса y = tgx на интервале .

Решение.

Производная функции тангенса на интервале положительна , что указывает на возрастание функции. Исследуем поведение функции на границах интервала:

Таким образом, при изменении аргумента от к значения функции возрастают от минус бесконечности к плюс бесконечности, то есть, множество значений тангенса на этом интервале есть множество всех действительных чисел .

Пример.

Найдите область значений функции натурального логарифма y = lnx .

Решение.

Функция натурального логарифма определена для положительных значений аргумента . На этом интервале производная положительна , это говорит о возрастании функции на нем. Найдем односторонний предел функции при стремлении аргумента к нулю справа, и предел при x стремящемся к плюс бесконечности:

Мы видим, что при изменении x от нуля к плюс бесконечности значения функции возрастают от минус бесконечности к плюс бесконечности. Следовательно, областью значений функции натурального логарифма является все множество действительных чисел.

Пример.

Решение.

Эта функция определена для всех действительных значений x . Определим точки экстремума, а также промежутки возрастания и убывания функции.

Следовательно, функция убывает при , возрастает при , x = 0 - точка максимума, соответствующий максимум функции.

Посмотрим на поведение функции на бесконечности:

Таким образом, на бесконечности значения функции асимптотически приближаются к нулю.

Мы выяснили, что при изменении аргумента от минус бесконечности к нулю (точке максимума) значения функции возрастают от нуля до девяти (до максимума функции), а при изменении x от нуля до плюс бесконечности значения функции убывают от девяти до нуля.

Посмотрите на схематический рисунок.

Теперь хорошо видно, что область значений функции есть .

Нахождение множества значений функции y = f(x) на промежутках требует аналогичных исследований. Не будем сейчас подробно останавливаться на этих случаях. В примерах ниже они нам еще встретятся.

Пусть область определения функции y = f(x) представляет собой объединение нескольких промежутков. При нахождении области значений такой функции определяются множества значений на каждом промежутке и берется их объединение.

Пример.

Найдите область значений функции .

Решение.

Знаменатель нашей функции не должен обращаться в ноль, то есть, .

Сначала найдем множество значений функции на открытом луче .

Производная функции отрицательна на этом промежутке, то есть, функция убывает на нем.

Получили, что при стремлении аргумента к минус бесконечности значения функции асимптотически приближаются к единице. При изменении x от минус бесконечности до двух значения функции убывают от одного до минус бесконечности, то есть, на рассматриваемом промежутке функция принимает множество значений . Единицу не включаем, так как значения функции не достигают ее, а лишь асимптотически стремятся к ней на минус бесконечности.

Действуем аналогично для открытого луча .

На этом промежутке функция тоже убывает.

Множество значений функции на этом промежутке есть множество .

Таким образом, искомая область значений функции есть объединение множеств и .

Графическая иллюстрация.

Отдельно следует остановиться на периодических функциях. Область значений периодических функций совпадает с множеством значений на промежутке, отвечающем периоду этой функции.

Пример.

Найдите область значений функции синуса y = sinx .

Решение.

Эта функция периодическая с периодом два пи. Возьмем отрезок и определим множество значений на нем.

Отрезку принадлежат две точки экстремума и .

Вычисляем значения функции в этих точках и на границах отрезка, выбираем наименьшее и наибольшее значение:

Следовательно, .

Пример.

Найдите область значения функции .

Решение.

Мы знаем, что областью значений арккосинуса является отрезок от нуля до пи, то есть, или в другой записи . Функция может быть получена из arccosx сдвигом и растяжением вдоль оси абсцисс. Такие преобразования на область значений не влияют, поэтому, . Функция получается из растяжением втрое вдоль оси Оy , то есть, . И последняя стадия преобразований – это сдвиг на четыре единицы вниз вдоль оси ординат. Это нас приводит к двойному неравенству

Таким образом, искомая область значений есть .

Приведем решение еще одного примера, но без пояснений (они не требуются, так как полностью аналогичны).

Пример.

Определите область значений функции .

Решение.

Запишем исходную функцию в виде . Областью значений степенной функции является промежуток . То есть, . Тогда

Следовательно, .

Для полноты картины следует поговорить о нахождении области значений функции, которая не является непрерывной на области определения. В этом случае, область определения разбиваем точками разрыва на промежутки, и находим множества значений на каждом из них. Объединив полученные множества значений, получим область значений исходной функции. Рекомендуем вспомнить 3 слева значения функции стремятся к минус единице, а при стремлении x к 3 справа значения функции стремятся к плюс бесконечности.

Таким образом, область определения функции разбиваем на три промежутка .

На промежутке имеем функцию . Так как , то

Таким образом, множество значений исходной функции на промежутке есть [-6;2] .

На полуинтервале имеем постоянную функцию y = -1 . То есть, множество значений исходной функции на промежутке состоит из единственного элемента .

Функция определена для всех действительных значений аргумента. Выясним промежутки возрастания и убывания функции.

Производная обращается в ноль при x=-1 и x=3 . Отметим эти точки на числовой оси и определим знаки производной на полученных интервалах.

Функция убывает на , возрастает на [-1; 3] , x=-1 точка минимума, x=3 точка максимума.

Вычислим соответствующие минимум и максимум функции:

Проверим поведение функции на бесконечности:

Второй предел вычисляли по .

Сделаем схематичный чертеж.

При изменении аргумента от минус бесконечности до -1 значения функции убывают от плюс бесконечности до -2e , при изменении аргумента от -1 до 3 значения функции возрастают от -2e до , при изменении аргумента от 3 до плюс бесконечности значения функции убывают от до нуля, но нуля не достигают.