Минеральные вещества для растений. Роль различных элементов в жизни растений

ЖЕЛЕЗО
Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов.
Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количе-
ствах более значительных, чем другие металлы. Так содержание железа в листьях дос-
тигает сотых долей процента, за ним следует марганец, концентрация цинка выражается
уже в тысячных долях, а содержание меди не превышает десятитысячных процента .
Органические соединения, в состав которых входит железо, необходимы в биохи-
мических процессах, происходящих при дыхании и фотосинтезе. Это объясняется очень
высокой степенью их каталитических свойств. Неорганические соединения железа также
способны катализировать многие биохимические реакции, а в соединении с органиче-
скими веществами каталитические свойства железа возрастают во много раз.
Каталитическое действие железа связано с его способностью менять степень
окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтому
соединения железа являются переносчиками электронов в биохимических процессах. В
основе реакций, происходящих при дыхании растений лежит процесс переноса электро-
нов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, со-
держащими железо.
Железу принадлежит особая функция - непременное участие в биосинтезе хло-
рофилла. Поэтому любая причина, ограничивающая доступность железа для растений,
приводит к тяжелым заболеваниям, в частности к хлорозу.
При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного
образования органических веществ, из которых строится организм растения, и дефицита
органических резервов, происходит общее расстройство обмена веществ. Поэтому при
остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустар-
ников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти
белыми, постепенно усыхают.
МАРГАНЕЦ
Роль марганца в обмене веществ у растений сходна с функциями магния и желе-
за. Марганец активирует многочисленные ферменты, особенно при фосфоролировании.
Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на
многих процессах обмена веществ, в частности на синтезе углеводов и протеинов .
Признаки дефицита марганца у растений чаще всего наблюдаются на карбонат-
ных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН
выше 6,5.
Недостаток марганца становится заметным сначала на молодых листьях по более
светлой зеленой окраске или по обесцвечиванию (хлорозу). В отличие от железистого
хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зе-
леные или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением.
Признаки марганцевого голодания у двудольных такие же, как при недостатке железа,
только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме
того, очень быстро появляются бурые некротические пятна. Листья отмирают даже бы-
стрее, чем при недостатке железа.
Марганцевая недостаточность у растений обостряется при низкой температуре и
высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его
недостатку ранней весной.
Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При не-
достатке марганца понижается синтез органических веществ, уменьшается содержание
хлорофилла в растениях, и они заболевают хлорозом.
Симптомы марганцевой недостаточности у растений проявляются чаще всего на
карбонатных, торфянистых и других почвах с высоким содержанием органического ве-
щества. Недостаток марганца у растений проявляется в появлении на листьях мелких
хлоротичных пятен, располагающихся между жилками, которые остаются зелеными. У
злаков хлоротичные пятна имеют вид удлиненных полосок, а у свеклы они располага-
ются мелкими пятнами по листовой пластинке. При марганцевом голодании отмечается
также слабое развитие корневой системы растений. Наиболее чувствительными культу-
рами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, кар-
тофель, яблоня, черешня и малина. У плодовых культур наряду с хлорозным заболева-
нием листьев отмечается слабая облиственность деревьев, более раннее, чем обычно
опадание листьев, а при сильном марганцевом голодании - засыхание и отмирание вер-
хушек веток.
Физиологическая роль марганца в растениях связана, прежде всего, с его уча-
стием в окислительно-восстановительных процессах, проходящих в живой клетке, он
входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, угле-
водном и белковом обмене и т.п..
Изучение эффективности марганцевых удобрений на различных почвах Украины пока-
зали, что урожай сахарной свеклы и содержание в ней сахара на их фоне был выше, бо-
лее высоким был при этом и урожай зерновых .

ЦИНК
Все культурные растения по отношению к цинку делятся на 3 группы:
- очень чувствительные (кукуруза, лен, хмель, виноград, плодовые);
- средне чувствительные (соя, фасоль, кормовые бобовые, горох, сахарная свекла,
подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники);
- слабо чувствительные (овес, пшеница, ячмень, рожь, морковь, рис, люцерна).
Недостаток цинка для растений чаще всего наблюдается на песчаных и карбо-
натных почвах. .Мало доступного цинка на торфяниках, а также на некоторых мало-
плодородных почвах. Недостаток цинка сильнее всего сказывается на образовании се-
мян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности ши-
роко встречаются у различных плодовых культур (яблоня, черешня, японская слива,
орех, пекан, абрикос, авокадо, лимон, виноград). Особенно страдают от недостатка цин-
ка цитрусовые культуры.
Физиологическая роль цинка в растениях очень разнообразна. Он оказывает боль-
шое влияние на окислительно-восстановительные процессы, скорость которых при его
недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов пре-
вращения углеводородов. Установлено, что при недостатке цинка в листьях и корнях то-
мата, цитрусовых и других культур, накапливаются фенольные соединения, фитосте-
ролы или лецитины, уменьшается содержание крахмала. .
Цинк входит в состав различных ферментов: карбоангидразы, триозофосфатде-
гидрогеназы, пероксидазы, оксидазы, полифенолоксидазы и др.
Обнаружено, что большие дозы фосфора и азота усиливают признаки недоста-
точности цинка у растений и что цинковые удобрения особенно необходимы при внесе-
нии высоких доз фосфора .
Значение цинка для роста растений тесно связано с его участием в азотном об-
мене. Дефицит цинка приводит к значительному накоплению растворимых азотных со-
единений - аминов и аминокислот, что нарушает синтез белка. Многие исследования
подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.
Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание
углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержа-
ние аскорбиновой кислоты, сухого вещества и хлорофилла. Цинковые удобрения повы-
шают засухо-, жаро- и холодоустойчивость растений .
Агрохимическими исследованиями установлена необходимость цинка для большого
количества видов высших растений. Его физиологическая роль в растениях много-
сторонняя. Цинк играет важную роль в окислительно-восстановительных процессах,
протекающих в растительном организме, он является составляющей частью ферментов,
непосредственно участвует в синтезе хлорофилла, влияет на углеводный обмен в рас-
тениях и способствует синтезу витаминов .
При цинковой недостаточности у растений появляются хлоротичные пятна на ли-
стьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. У
яблони, груши и ореха при недостатке цинка развивается так называемая розеточная
болезнь, выражающаяся в образовании на концах ветвей мелких листьев, которые рас-
полагаются в форме розетки . При цинковом голодании плодовых почек закладыва-
ется мало. Урожайность семечковых резко падает. Черешня еще более чувствительна к
недостатку цинка, чем яблоня и груша. Признаки цинкового голодания у черешни прояв-
ляются в появлении мелких, узких и деформированных листьев. Хлороз вначале появ-
ляется на краях листьев и постепенно распространяется к средней жилке листа. При
сильном развитии заболевания весь лист становится желтым или белым .
Из полевых культур цинковая недостаточность чаще всего проявляется на куку-
рузе в виде образования белого ростка или побеления верхушки. Показателем цинкового
голодания у бобовых (фасоль, соя) является наличие хлороза на листьях, иногда асим-
метрическое развитие листовой пластинки. Недостаток цинка для растений чаще всего
наблюдается на песчаных и супесчаных почвах с низким его содержанием, а также на
карбонатных и старопахотных почвах.
Применение цинковых удобрений повышает урожай всех полевых, овощных и
плодовых культур. При этом отмечается снижение пораженности растений грибковыми
заболеваниями, повышается сахаристость плодовых и ягодных культур .
БОР
Бор необходим для развития меристемы. Характерными признаками недостатка бора
являются отмирание точек роста, побегов и корней, нарушения в образовании и разви-
тии репродуктивных органов, разрушение сосудистой ткани и т.д. Недостаток бора очень
часто вызывает разрушение молодых растущих тканей.
Под влиянием бора улучшаются синтез и перемещение углеводов, особенно са-
харозы, из листьев к органам плодоношения и корням. Известно, что однодольные рас-
тения менее требовательны к бору, чем двудольные.
В литературе имеются данные о том, что бор улучшает передвижение ростовых
веществ и аскорбиновой кислоты из листьев к органам плодоношения. Установлено, что
цветки наиболее богаты бором по сравнению с другими частями растений. Он играет
существенную роль в процессах оплодотворения. При исключении его из питательной
среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение
бора способствует лучшему прорастанию пыльцы, устраняет опадание завязей и усили-
вает развитие репродуктивных органов.
Бор играет важную роль в делении клеток и синтезе белков и является необходи-
мым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор
в углеводном обмене. Недостаток его в питательной среде вызывает накопление саха-
ров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным
удобрениям культур. Бор способствует и лучшему использованию кальция в процессах
обмена веществ в растениях. Поэтому при недостатке бора растения не могут нор-
мально использо-вать кальций, хотя последний находится в почве в достаточном коли-
честве. Установлено, что размеры поглощения и накопления бора растениями возрас-
тают при повышении калия в почве.
При недостатке бора в питательной среде наблюдается нарушение анатомиче-
ского строения растений, например, слабое развитие ксилемы, раздробленность флоз-
мы основной паренхимы и дегенерация камбия. Корневая система развивается слабо,
так как бор играет значительную роль в ее развитии.
Недостаток бора ведет не только к понижению урожая сельскохозяйственных
культур, но и к ухудшению его качества. Следует отметить, что бор необходим расте-
ниям в течение всего вегетационного периода. Исключение бора из питательной среды в
любой фазе роста растения приводит к его заболеванию.
Внешние признаки борного голодания изменяются в зависимости от вида расте-
ний, однако, можно привести ряд общих признаков, которые характерны для большин-
ства высших растений . При этом наблюдается остановка роста корня и стебля, за-
тем появляется хлороз верхушечной точки роста, а позже при сильном борном голода-
нии следует полное его отмирание. Из пазух листьев развиваются боковые побеги, рас-
тение усиленно кустится, однако вновь образовавшиеся побеги, вскоре тоже останавли-
ваются в росте и повторяются все симптомы заболевания главного стебля. Особенно
сильно страдают от недостатка бора репродуктивные органы растений, при этом боль-
ное растение может совершенно не образовывать цветков или их образу-ется очень ма-
ло, отмечается пустоцвет опадание завязей.
В этой связи применение борсодержащих удобрений и улучшение обеспечения
растений этим элементом способствует не только увеличению урожайности, но и значи-
тельному повышению качества продукции. Улучшение борного питания ведет к повыше-
нию сахаристости сахарной свеклы, повышению содержания витамина С и сахаров
в плодово-ягодных культурах, томатах и т. д. .
Наиболее отзывчивы на борные удобрения сахарная и кормовая свекла, люцерна и кле-
вер (семенные посевы), овощные культуры, лен, подсолнечник, конопля, эфиромаслич-
ные и зерновые культуры.
МЕДЬ
Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью
к недостатку меди. Растения можно расположить в следующем порядке по убывающей
отзывчивости на медь: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпи-
нат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель,
томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного
и тоже вида имеют большое значение и существенно влияют на степень проявления
симптомов медной недостаточности. .
Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах
также с недостатком магния. Внесение высоких доз азотных удобрений усиливает по-
требность растений в меди и способствует обострению симптомов медной недостаточ-
ности.
Несмотря на то, что ряд других макро- и микроэлементов оказывает большое
влияние на скорость окислительно-восстановительных процессов, действие меди в этих
реакциях является специфическим, и она не может быть заменена каким-либо другим
элементом. Под влиянием меди повышается как активность пероксисилазы, так и сни-
жение активности синтетических центров и ведет к накоплению растворимых углеводов,
аминокислот и других продуктов распада сложных органических веществ. Медь является
составной частью ряда важнейших окислительных ферментов - полифенолксидазы, ас-
корбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществ-
ляют реакции окисления переносом электронов с субстрата к молекулярному кислороду,
который является акцептором электронов. В связи с этой функцией валентность меди в
окислительно-восстановительных реакциях изменяется от двухвалентного до однова-
лентного состояния и обратно.
Медь играет большую роль в процессах фотосинтеза. Под влиянием меди повы-
шается как активность пароксидазы, так и синтез белков, углеводов и жиров. При ее не-
достатке разрушение хлорофилла происходит значительно быстрее, чем при нормаль-
ном уровне питания растений медью, наблюдается понижение активности синтетических
процессов, что ведет к накоплению растворимых углеводов, аминокислот и других про-
дуктов распада сложных органических веществ .
При питании аммиачным азотом недостаток меди задерживает включение азота в
белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это
указывает на особо важную роль меди при применении аммиачного азота.
Характерной особенностью действия меди является то, что этот микроэлемент
повышает устойчивость растений против грибковых и бактериальных заболеваний. Медь
снижает заболевание зерновых культур различными видами головни, повышает устой-
чивость растений к бурой пятнистости и т.д. .
Признаки медной недостаточности проявляются чаще всего на торфянистых и на
кислых песчаных почвах. Симптомы заболевания растений при недостатке в почве меди
проявляются для зерновых в побелении и засыхании кончиков листовой пластинки. При
сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем ко-
лошения не происходит и весь стебель постепенно засыхает.
Плодовые культуры при недостатке меди заболевают так называемой суховер-
шинностью или экзантемой. При этом на листовых пластинках слив и абрикосов между
жилками развивается отчетливый хлороз.
У томатов при недостатке меди отмечается замедление роста побегов, слабое
развитие корней, появление темной синевато-зеленой окраски листьев и их закручива-
ние, отсутствие образования цветков.
Все указанные выше заболевания сельскохозяйственных культур при применении
медных удобрений полностью устраняются, и продуктивность растений резко возрастает
.
МОЛИБДЕН
В настоящее время молибден по своему практическому значению выдвинут на одно из
первых мест среди других микроэлементов, так как этот элемент оказался весьма важ-
ным фактором в решении двух кардинальных проблем современного сельского хозяй-
ства - обеспечения растений азотом, а сельскохозяйственных животных белком .
В настоящее время установлена необходимость молибдена для роста растений
вообще. При недостатке молибдена в тканях растений накапливается большое количе-
ство нитратов и нарушается нормальный азотный обмен.
Молибден участвует в углеводородном обмене, в обмене фосфорных удобрений,
в синтезе витаминов и хлорофилла, влияет на интенсивность окислительно-восстанови-
тельных реакций. После обработки семян молибденом в листьях повышается содержа-
ние хлорофилла, каротина, фосфора и азота.
Установлено, что молибден входит в состав фермента нитратрадуктазы,
осуществляющей восстановление нитратов в растениях. Активность этого фермента зависит
от уровня обеспеченности растений молибденом, а так же от форм азота, применяемых
для их питания. При недостатке молибдена в питательной среде резко снижается актив-
ность нитратрадуктазы.
Внесение молибдена отдельно и совместно с бором в различные фазы роста го-
роха улучшало активность аскорбинатоксидазы, полифенолоксидазы и пароксидазы.
Наибольшее влияние на на активность аскорбинатоксидазы и полифенолоксидазы ока-
зывает молибден, а активность пароксидазы - бор на фоне молибдена.
Нитратредуктаза при участии молибдена катализирует восстановление нитратов
и нитритов, а нитритредуктаза также при участии молибдена восстанавливает нитраты
до аммиака. Этим объясняется положительное действие молибдена на повышение со-
держания белков в растениях.
Под влиянием молибдена в растениях увеличивается также содержание углево-
дов, каротина и аскорбиновой кислоты, повышается содержание белковых веществ.
Воздействием молибдена в растениях увеличивается содержание хлорофилла и повы-
шается интенсивность фотосинтеза.
Недостаток молибдена приводит к глубокому нарушению обмена веществ у рас-
тений. Симптомам молибденовой недостаточности предшествует в первую очередь из-
менение в азотном обмене у растений. При недостатке молибдена тормозится процесс
биологической редукции нитратов, замедляется синтез амидов, аминокислот и белков.
Все это приводит не только к снижению урожая, но и к резкому ухудшению его качества
.
Значение молибдена в жизни растений довольно разнообразно. Он активизирует
процессы связывания атмосферного азота клубеньковыми бактериями, способствует
синтезу и обмену белковых веществ в растениях. Наиболее чувствительны к недостатку
молибдена такие культуры как соя, зерновые бобовые культуры, клевер, многолетние
травы. Потребность растений в молибденовых удобрениях обычно возрастает на кислых
почвах, имеющих рН ниже 5,2.
Физиологическая роль молибдена связана с фиксацией атмосферного азота, ре-
дукцией нитратного азота в растениях, участием в окислительно-восстановительных
процессах, углеводном обмене, в синтезе хлорофилла и витаминов .
Недостаток молибдена в растениях проявляется в светло-зеленой окраске ли-
стьев, при этом сами листья становятся узкими, края их закручиваются внутрь и посте-
пенно отмирают, появляется крапчатость, жилки листа остают-ся светло-зелеными. Не-
достаток молибдена выражается, прежде всего, в появлении желто-зеленой окраски ли-
стьев, что является следствием ослабления фиксации азота атмосферы, стебли и че-
решки растений становятся красновато-бурыми .
Результаты опытов по изучению молибденовых удобрений показали, что при их
применении повышается урожай сельскохозяйственных культур и его качество, но осо-
бенно важна его роль в интенсификации симбиотической азотофиксации бобовыми куль-
турами и улучшении азотного питания последующих культур .
КОБАЛЬТ
Кобальт необходим для усиления азотофиксирующей деятельности клубеньковых бак-
терий Он входит в состав витамина В12, который имеется в клубеньках, оказывает за-
метное положительное действие на активность фермента гидрогеназы, а также увели-
чивает активность нитратредуктазы в клубеньках бобовых культур.
Этот микроэлемент влияет на накопление сахаров и жиров в растениях. Кобальт
благоприятно действует на процесс синтеза хлорофилла в листьях растений, уменьшает
его распад в темноте, увеличивает интенсивность дыхания, содержание аскорбиновой
кислоты в растениях. В результате внекорневых подкормок кобальтом в листьях расте-
ний повышается общее содержание нуклеиновых кислот. Кобальт оказывает заметное
положительное действие на активность фермента гидрогеназы, а также увеличивает ак-
тивность нитратредуктазы в клубеньках бобовых культур. Доказано положительное дей-
ствие кобальта на томаты, горох, гречиху, ячмень, овес и другие культуры. .
Кобальт принимает активное участие в реакциях окисления и восстановления,
стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергети-
ческий обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положи-
тельному влиянию на обмен веществ, синтез белков, усвоение углеводов и т.п. он явля-
ется могучим стимулятором роста.
Положительное действие кобальта на сельскохозяйственные культуры проявля-
ется в усилении азотофиксации бобовыми, повышении содержания хлорофилла в ли-
стьях и витамина В12 в клубеньках. .
Применение кобальта в виде удобрений под полевые культуры повышало урожай
сахарной свеклы, зерновых культур и льна. При удобрении кобальтом винограда повы-
шался урожай его ягод, их сахаристость и снижалась кислотность.
В таблице 1 приведены обобщенные характеристики влияния микроэлементов на
функции растений, поведение их в почве при различных условиях, симптомы их дефи-
цита и его последствия.
Приведенный обзор физиологической роли микроэлементов для высших растений
свидетельствует о том, что недостаток почти каждого из них ведет к проявлению в той или иной степени хлороза у растений.
На засоленных почвах применение микроэлементов усиливает поглощение рас-
тениями питательных веществ из почвы и снижается поглощение хлора, повышается на-
копление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содер-
жания хлорофилла и повышается продуктивность фотосинтеза. Кроме этого необходимо
отметить и фунгицидные свойства микроэлементов, подавление грибковых заболеваний
при обработке семян и при внесении их по вегетирующим растениям.

1. Какие функции выполняет корень?

Корни закрепляют растение в почве и прочно удерживают его в течение всей жизни. Через них растение получает из почвы воду и растворённые в ней минеральные вещества. В корнях некоторых растений могут откладываться и накапливаться запасные вещества.

2. Что такое корневой волосок? Какую функцию он выполняет?

Корневой волосок - относительно длинный вырост наружной клетки корня в зоне всасывания. Под клеточной оболочкой в нём находятся цитоплазма, ядро, бесцветные пластиды и вакуоль с клеточным соком.

Корневые волоски осуществляют всасывание питательных веществ и воды.

3. Какие минеральные вещества вам известны?

Азот, калий, фосфор, магний, сера.

Вопросы

1. Какие вещества необходимы для минерального питания растения?

Азот, калий, фосфор, магний, сера, бор, медь, цинк, кобальт и др.

2. Как растения поглощают питательные вещества?

Водоросли, а также некоторые водные растения усваивают питательные вещества всей поверхностью тела. Высшие растения поглощают их из почвы через корни. Вода и минеральные соли поступают в растение через корневые волоски.

3. Что такое корневое давление?

Корневое давление - давление в проводящих сосудах корней, обеспечивающее передвижение воды и растворённых в ней минеральных веществ к надземным органам растения.

Поглощение воды корнем зависит от её температуры. Холодная вода плохо поглощается корнями.

5. Какие виды удобрений вы знаете?

В почву вносят органические и минеральные удобрения.

Органические удобрения (от слова «организм») - это отходы жизнедеятельности животных (навоз, птичий помёт) или отмершие части организмов животных и растений (перегной, торф).

В зависимости от содержания минеральных веществ различают азотные, фосфорные и калийные минеральные удобрения.

Кроме того, широко используют микроудобрения, в которых содержатся такие элементы, как бор, медь, цинк, кобальт и др.

6. Какое влияние на рост и развитие растений оказывают азот, калий, фосфор?

7. Что такое подкормка?

Подкормка растений – восполнение содержания минеральных веществ в почве в ходе внесения органических и минеральных удобрений.

Подумайте

1. Правильно ли поступают люди, убирая осенью опавшую листву с газонов в скверах и парках населённых пунктов?

Убирая осенью опавшую листву с газонов в скверах и парках населённых пунктов, люди поступают неправильно, т.к. опавшая листва, погибшие растения и животные перегнивают и обогащают почву минеральными веществами.

2. С чем связаны особенности строения клетки корневого волоска?

Корневой волосок - относительно длинный вырост наружной клетки корня, что значительно увеличивает всасывающую поверхность корня.

Корневые волоски покрыты слизью и тесно соприкасаются с частицами почвы. Благодаря этому облегчается всасывание воды с растворёнными минеральными веществами.

Задания

1. Возьмите два одинаковых растения колеуса средних размеров. Поставьте их в светлое тёплое место и три дня не поливайте. Затем регулярно поливайте: первое растение - ежедневно утром и вечером, расходуя на каждый полив по 50 мл воды, второе растение - три раза в неделю (понедельник, среда, пятница), расходуя на каждый полив по 200 мл воды. Опыт проводите в течение месяца. Результаты наблюдений записывайте в тетрадь. Сравните результаты наблюдений и сделайте вывод.

Результат опыта будет зависеть от времени года: летом колеус поливают обильно(т.е. в таком случае подойдет первый вариант), осенью и зимой полив сокращают(лучше будет развиваться растение с поливом 3 раза в неделю).

2. Для подготовки к изучению прорастания семян в стакан из тонкого прозрачного стекла поместите промокательную бумагу так, чтобы она плотно прилегла к стенкам стакана. На дно стакана налейте немного воды. Между стеклом и промокательной бумагой поместите зерновки пшеницы, ржи, ячменя или овса и наблюдайте за их прорастанием. В другой стакан положите семена фасоли или гороха также для наблюдения за прорастанием. В третий стакан поместите семена фасоли или гороха, отделив у них одну семядолю. Следите, чтобы семена не высохли. Установите, когда они набухнут. Проследите, когда у проростков появятся корни, сколько их разовьётся через некоторое время, как происходят рост и дальнейшее развитие проростков. Свои наблюдения запишите.

Для разных семян сроки набухания сильно отличаются:

Злаки (пшеница, рожь, овёс, ячмень): 6-8 часов.

Бобовые (горох, фасоль): 8-12 часов.

Время для прорастания своё для каждых семян:

Злаки (пшеница, рожь, овёс, ячмень): 6-10 часов

Бобовые: 10-16 часов.

Через 8-10 дней будет видно, что проросток семени с двумя семядолями оказался более крупным, сильным, чем проросток с одной семядолей. Это объясняется тем, что кроме воды и воздуха важнейшим условием прорастания семян являются содержащиеся в них запасные питательные вещества. Они обеспечивают первоначальное питание зародыша, его способность к увеличению размеров и числа клеток и формирование проростка. Если запасных питательных веществ в семени мало, то развитие зародыша происходит медленно.

После появления зародышевого корешка у гороха наблюдается формирование боковых корней – начинает формироваться стержневая корневая система, у пшеницы – мочковатая.

Любое растение - это настоящий живой организм, и для того, чтобы его развитие шло полноценно, требуются жизненно важные условия: свет, воздух, влага и питание.

Все они равнозначны и недостаток одного пагубно сказывается на общем состоянии. В этой статье мы поговорим о такой важной составляющей в жизни растений, как минеральное питание.

Особенности процесса питания

Являющаяся основным источником энергии, без которой угасают все жизненные процессы, пища необходима каждому организму. Следовательно, питание - не просто важное, а одно из основных условий для качественного роста растения, и они добывают пищу, пуская в ход все надземные части и корневую систему. Посредством корней они извлекают из грунта воду и нужные минеральные соли, пополняющие необходимый запас веществ, осуществляя почвенное или минеральное питание растений.

Существенная роль в этом процессе отведена корневым волоскам, поэтому подобное питание носит еще одно название - корневое. С помощью этих нитевидных волосков растение вытягивает из земли водные растворы самых разных химических элементов.

Работают они по принципу насоса и располагаются на корне в зоне всасывания. Растворы солей, поступающие в ткани волоска, перемещаются в проводящие клетки — трахеиды и сосуды. По ним вещества попадают в проводные далее по стеблям распространяются по всем надземным частям.

Элементы минерального питания растений

Итак, пищей для представителей растительного царства служат вещества, получаемые из почвы. Питание растений минеральное или почвенное - это единство разных процессов: от поглощения и продвижения до усвоения элементов, находящихся в почве в виде минеральных солей.

Исследования золы, оставшейся от растений, показали, как много в ней остается химических элементов и количество их в разных частях и разных представителях флоры не одинаково. Это является свидетельством того, что химические элементы поглощаются и скапливаются в растениях. Подобные опыты привели к следующим выводам: жизненно важными признаны элементы, находящиеся во всех растениях - фосфор, кальций, калий, сера, железо, магний, а также микроэлементы, представленные цинком, медью, бором, марганцем и др.

Несмотря на разное количество этих веществ, имеются они в любом растении, и замена одним элементом другого невозможна ни при каких условиях. Уровень наличия минеральных веществ в почве очень важен, поскольку от этого зависит урожайность сельскохозяйственных культур и декоративность цветущих. В разных почвах различна и степень насыщенности почвы нужными веществами. К примеру, в умеренных широтах России отмечается существенная нехватка азота и фосфора, иногда калия, поэтому обязательным является внесение удобрений - азотных и калийно-фосфорных. Каждому элементу отведена своя роль в жизни растительного организма.

Правильное питание растений (минеральное) стимулирует качественное развитие, которое осуществляется лишь тогда, когда все необходимые вещества в нужном количестве имеются в почве. Если наблюдается нехватка или излишек некоторых из них, растения реагируют изменением окраски листвы. Поэтому одним из важных условий агротехники сельскохозяйственных культур являются разработанные нормы внесения подкормок и удобрений. Отметим, что многие растения лучше недокормить, чем перекормить. Например, для всех ягодных садовых культур и их дикорастущих форм губителен именно избыток питания. Узнаем, как разные вещества взаимодействуют с и на что каждое из них влияет.

Азот

Один из самых необходимых для роста растения элементов - азот. Он присутствует в составе белков и аминокислот. Дефицит азота проявляется в изменении окраски листьев: на первых порах лист мельчает и краснеет. Существенная нехватка вызывает нездоровый желто-зеленый цвет или бронзово-красный налет. Первыми поражаются более старые листья снизу на побегах, затем по всему стеблю. При продолжающемся дефиците прекращается рост ветвей и завязывание плодов.

Излишнее соединениями ведет к повышенному содержанию азота в почве. При этом наблюдают бурный рост побегов и интенсивное наращивание зеленой массы, что не дает возможности растению заложить цветковые почки. В результате продуктивность растения заметно снижается. Вот почему так важно сбалансированное минеральное почвенное питание растений.

Фосфор

Не менее важен в растительной жизнедеятельности и этот элемент. Он является составляющей частью нуклеиновых кислот, соединение которых с белками образуют нуклеопротеиды, входящие в состав ядра клетки. Фосфор концентрируется в тканях растений, их цветках и семенах. Во многом способность деревьев противостоять природным катаклизмам зависит от наличия фосфора. Он отвечает за морозоустойчивость и комфортное проведение зимовки. Дефицит элемента проявляется в замедлении деления клеток, прекращении роста растения и развития корневой системы, листва приобретает лилово-красный оттенок. Усугубление ситуации грозит растению гибелью.

Калий

В минеральные вещества для питания растений входит калий. Он необходим в наибольших количествах, поскольку стимулирует процесс всасывания, биосинтеза и транспортировки жизненно важных элементов во все части растения.

Нормальное обеспечение калием повышает сопротивляемость растительного организма, стимулирует защитные механизмы, засухо- и холодоустойчивость. Цветение и плодообразование с достаточным обеспечением калием более эффективно: цветы и плоды значительно крупнее и ярче окрашены.

При нехватке элемента рост существенно замедляется, а сильный дефицит приводит к истончению и ломкости стеблей, изменению окраски листьев на лилово-бронзовую. Затем листья сохнут и разрушаются.

Кальций

Нормальное почвенное питание растений (минеральное) невозможно без кальция, который присутствует практически во всех клетках растительного организма, стабилизируя их функциональность. Особенно значим этот элемент для качественного роста и работы корневой системы. Недостаток кальция сопровождается задержкой роста корней и неэффективным формированием корневой системы. Проявляется недостаток кальция в покраснении кромки верхних листьев на молодых побегах. Усиливающийся дефицит добавит пурпурной окраски на всей площади листа. Если кальций так и не поступит в растение, то листья у побегов текущего года засыхают вместе с верхушками.

Магний

Процесс минерального питания растений при нормальном развитии невозможен без магния. Входя в состав хлорофилла, он является обязательным элементом процесса фотосинтеза.

Активизируя ферменты, принимающие участие в обмене веществ, магний стимулирует закладку ростовых почек, прорастание семян и другую репродуктивную деятельность.

Признаки нехватки магния - появление красноватого оттенка в основании листьев, распространяющегося вдоль центрального проводника и занимающего до двух третей листовой пластины. Сильный дефицит магния приводит к омертвению листа, снижению продуктивности растения и его декоративности.

Железо

Отвечающий за нормальное дыхание растений, этот элемент незаменим в окислительно-восстановительных процессах, поскольку именно он является акцептором молекул кислорода и синтезирует вещества-предшественники хлорофилла. При дефиците железа растение поражает светлеют и истончаются, приобретая желтовато-зеленую, а затем ярко-желтую окраску с темными ржавыми пятнами. Нарушение дыхание провоцирует замедление роста растений, значительное снижение урожайности.

Марганец

Ничуть не преувеличивая значения необходимых микроэлементов, вспомним о том, как реагируют на них растения и почва. Минеральное питание растений дополняется марганцем, обязательным для продуктивного течения процессов фотосинтеза, а также синтеза белков и др. Нехватка марганца проявляется в слабой молодой поросли, а сильный дефицит делает ее нежизнеспособной - листья на стеблях желтеют, верхушки побегов засыхают.

Цинк

Этот микроэлемент - активный участник в процессе образования ауксина и катализатор роста растения. Являясь обязательным компонентом хлоропластов, цинк присутствует при фотохимическом расщеплении воды.

Он необходим при оплодотворении и развитии яйцеклетки. Дефицит цинка становится заметным в конце и во время отдыха - листья приобретают лимонный оттенок.

Медь

Питание растений минеральное или корневое будет неполным без этого микроэлемента. Входящая в состав целого ряда ферментов, медь активизирует такие важные процессы, как дыхание растения, белковый и углеводный обмены. Производные меди - обязательные компоненты фотосинтеза. Недостаток этого элемента проявляется засыханием верхушечных побегов.

Бор

Стимулирующий синтез аминокислот, углеводов и белков, бор присутствует во многих ферментах, регулирующих обмен. Признаком острой нехватки бора является появление пестрых пятен на молодых стеблях и проявляющийся синеватый оттенок листьев у основания побегов. Дальнейший дефицит элемента приводит к разрушению листвы и гибели молодой поросли. Цветение получается слабое и непродуктивное - плоды не завязываются.

Мы перечислили основные химические элементы, необходимые для нормального развития, качественного цветения и плодоношения. Все они, правильно сбалансированные, составляют качественное минеральное питание растений. И значение воды также переоценить сложно, ведь все вещества из почвы поступают в растворенном виде.


1. Изучение влияния на интенсивность физиологических процессов при их исключении из питательной среды.

2. Изучение специфической роли отдельных микроэлементов, главным образом участия их в определенных ферментных реакциях.

Второй биохимический подход оказался более результативным.

Железо было первым микроэлементом, необходимость которого была открыта Грисом в 1843 - 1844гг.

Необходимость других микроэлементов - бора, марганца, меди, цинка и молибдена, для высших растений была установлена только в 20-ых и 30-ых годах 20 столетия. Установлению их необходимости способствовало вскрытие причин многих заболеваний растений, не вызываемых грибной и бактериальной инфекцией - гниль сердечка сахарной свеклы, серая пятнистость листьев, бронзовая болезнь и др. Все эти болезни оказались результатом физиологического расстройства, вызванного недостатком того или иного микроэлемента, и болезнь ликвидировалась, как только удовлетворялась потребность растения в отсутствовавшем элементе.

Этим элементам принадлежит исключительная роль в обмене веществ. Они, соединяясь с органическими веществами, особенно белками, во много раз повышают свою каталитическую активность. Так, например, железо в составе сложного геминового комплекса в сочетании со специфическим белком повышает каталитическую активность против активности иона железа в 1010 раз.

Бор, алюминий, кобальт, марганец, цинк и медь повышают засухоустойчивость растений. И в данном случае действие микроэлементов обусловлено влиянием на коллоидно-биохимические свойства протоплазмы (повышение гидрофильности и водоудерживающей способности коллоидов). Микроэлементы усиливают также передвижение пластических веществ из листьев в генеративные органы.

Существенные сдвиги вызывают некоторые микроэлементы в скорости прохождения стадий развития. Установлено, что намачивание семян пшеницы в растворах солей Cu, Zn, Mo, B значительно ускоряет прохождение растениями стадии яровизации, тогда как растворы Fe и Mn не оказывали положительного действия или задерживали развитие.

Влияние каждого из элементов зависит от концентрации: оно сказывается на последующем росте надземных органов и корней неодинаково. Так, Cu и Mo стимулируют рост стебля и корней, тогда как Mn и Ni - только стебля, а B и Sr - только корневой.

Сильное положительное влияние оказывала обработка семян Сu на засухоустойчивость растений хлопчатника. Этот эффект обусловлен повышением водоудерживающей способности и сосущей силы клеток листовой паренхимы, изменением анатомического строения листьев в сторону ксерофитности и т.д. Аналогичный эффект наблюдали на озимой пшенице при обработке семян солями B,Cu, Mo, Co, P и К. прохождение световой стадии ускорялось под влиянием B, Co, Mo, Mn, Zn, Cu и Al. Интересно, что это наблюдалось только на длиннодневных растениях (озимая пшеница, овес) и не проявлялось на короткодневных (перилла).

В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я. В. Пейве, М. Я. Школьник, М. В. Каталымов, Б. А. Ягодин и др.

Бор

Бор - один из наиболее важных для растений микроэлементов. Его среднее содержание составляет 0,0001%, или 0,1 мг на 1 кг сухой массы. В боре наиболее нуждаются двудольные растения. Обнаружено значительное содержание бора в цветках, особенно в рыльце и столбиках. В клетке большая часть этого микроэлемента сконцентрирована в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен.

Поглощение бора сильно зависит от pH, а его распределение по растению происходит преимущественно с транспирационным током. Необходимость бора для растений установлена очень давно, но до сих пор неясно, каким образом реализуются его функции: в какие конкретно реакции он включен и каков механизм его участия в отдельных процессах.

Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Недостаток бора вызывает ряд заболеваний: гниль сердечка сахарной свеклы, внутренняя черная пятнистость столовой свеклы и брюквы, болезнь побурения головок цветной капусты, отмирание колосков у пшеницы и даже всего зачаточного колоса у ячменя, пожелтение люцерны и др. Установлено, что под влиянием бора изменяется ряд физиологических процессов: увеличивается оводненность плазмы, усиливается поглощение катионов и особенно кальция и ослабляется поглощение анионов.

Также при недостатке бора нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов, оплодотворение и плодоношение. Бор необходим растениям в течение всего периода их развития. Он не может реутилизироваться и поэтому при борном голодании прежде всего

отмирают конусы нарастания - наиболее типичный симптом борной недостаточности. Анатомические исследования указывают на прекращение деления клеток в меристеме. Одновременно обнаруживаются значительные нарушения нормального расположения элементов флоэмы и ксилемы, вплоть до полной потери этими тканями проводимости. В этом состоят причины обнаруживаемых при борном голодании нарушений передвижения пластических веществ и, прежде всего, сахаров из листьев в осевые и запасные органы растений.

Культуры, наиболее чувствительные к недостаче бора: сахарная и кормовая свекла, рапс, бобовые, люцерна, овощные, яблоня, виноград.

Магний

У высших растений среднее содержание магния составляет 0,02 %. Особенно много магния в растениях короткого дня - кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. Много его накапливается в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре. Накоплению магния в молодых тканях способствует его сравнительно высокая подвижность в растениях, что обусловливает его вторичное использование (реутилизацию) из стареющих тканей. Перемещение магния осуществляется как по ксилеме, так и по флоэме.

В хлоропласте сосредоточено 15% Mg 2+ листа, до 6% его может находиться в составе хлорофилла. При дефиците магния (голодании) доля Mg 2+ в пигменте может достигать даже 50% от общего содержания в листе. Эта функция магния уникальна: ни один другой элемент не может заменить его в хлорофилле. Магний необходим для синтеза протопорфирина 9 - непосредственного предшественника хлорофилла.

Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствии. Магний является активатором многих ферментов. Важной особенностью магния является то, что он связывает фермент с субстратом по типу хелатной связи.

Магний входит в состав фитина (органофосфата), запасного органического вещества. Отвечает за транспорт энергии, активирует фермент, который является катализатором участия СО 2 в процессе фотосинтеза.

Магний необходим для многих ферментов цикла Кребса и гликолиза. Он требуется и для работы ферментов молочнокислого и спиртового брожения.

Магний усиливает синтез эфирных масел, каучука, витаминов А и С.

При повышении степени обеспеченности магнием в растениях возрастает содержание органических и неорганических форм фосфорных соединений. Этот эффект, вероятно, связан с ролью магния в активации ферментов, участвующих в метаболизме фосфора.

Процесс поступления магния в растения может зависеть от степени обеспеченности растений другими катионами. Так, при высоком содержании калия или аммония в почве или питательном растворе уровень магния, особенно в вегетативных частях растений, снижается. В плодах же количество магния при этом не меняется или может даже возрастать. Наоборот, при низком уровне калия или аммония в питательной среде содержание магния в растении повышается. Кальций и марганец также действуют как конкуренты в процессе поглощения магния растениями.

Недостаток в магнии растения испытывают в основном не песчаных почвах. Бедны магнием и кальцием, богаты - сероземы; черноземы занимают промежуточное положение. При снижении pH почвенного раствора магний поступает в растения в меньших количествах.

Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме.

При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая "мраморная" окраска листьев наряду с хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропластов, а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев.

Признаки магниевой недостаточности вначале проявляются на старых листьях, а затем распространяются на молодые листья и органы растения. Высокая и продолжительная освещенность усиливает признаки нехватки магния.

Культуры, чувствительные к недостатку магния: сахарная свекла, картофель, хмель, виноград, орехи, парниковые культуры.

Железо

В составе соединений, содержащих гем (все цитохромы, каталаза, пероксидаза), и в негемовой форме (железосерные центры) железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении. Если для вегетирующих растений железо становится недоступным, то хлороз проявляется только на вновь развивающихся органах. Следовательно, железо прочно связывается в клетках и не способно передвигаться из старых тканей к молодым. Железо необходимо также и для бесцветных растений - грибов и бактерий, поэтому его роль не ограничивается только участием в образовании хлорофилла.

В злаковых культурах хлороз проявляется в виде чередования желтых и зеленых полос вдоль листа. В отдельных случаях дефицит железа может вызвать отмирание молодых побегов.

Дефицит железа вызывает также изменения морфологии корней, индуцируя рост корневых волосков, которые обильно покрывают поверхность корня. Это способствует лучшему контакту с почвой и почвенным раствором, увеличивая поглощение железа.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них - белок ферритин, который содержит железо в негемовой форме. На долю железа может приходиться около 23% сухой массы ферритина. В больших количествах ферритин присутствует в пластидах.

Культуры, чувствительные к недостатку железа: кукуруза, бобовые, картофель, капуста, томаты, виноград, плодовые и цитрусовые, декоративные культуры.

Марганец

Впервые на необходимость для растений марганца обратил внимание Бертран (1897). Среднее его содержание составляет 0,001% или 1 мг на 1 кг сухой массы тканей. В клетки он поступает в форме ионов Mn 2+ . Марганец накапливается в листьях. Установлено участие ионов этого металла в выделении кислорода (фоторазложение воды) и восстановлении CO 2 при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Ионы марганца активируют ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). в связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы.

Велико значение марганца для нормального протекания обмена азотистых соединений. Марганец принимает участие в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируемые рядом ферментов, из которых два (гидроксиламинредуктаза и нитритредуктаза) зависимы от марганца, в связи с чем растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания.

Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона - ауксина.

Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствии марганца хлорофилл быстро разрушается на свету.

Несмотря на значительное содержание марганца в почве, большая его часть труднодоступна для растений, особенно на почвах, имеющих нейтральное значение pH.

Марганец отвечает за окисление железа в организме растений к нетоксичным соединениям. Является необходимым компонентом синтеза витамина С. Интенсифицирует накопление сахара в корнеплодах сахарной свеклы и белка у зерновых культур. Отвечает за процесс усвоения азота. Является активатором фотосинтеза после подмерзания растений.

Симптом заболевания, вызванного недостатком марганца, служит прежде всего появление хлоротичных пятен между жилками листа. У злаков появляются удлиненные полоски хлоротичной ткани серого цвета, затем появляется узкая зона ослабленного тургора, в результате чего пластинка листа свешивается вниз. При резкой недостаточности марганца эти симптомы распространяются и на стебель. Заболевшие листья при развитии заболевания буреют и отмирают.

Болезнь серая пятнистость широко распространена на богатых гумусом почвах, имеющих щелочную реакцию. Этому заболеванию подвержены злаки, особенно овес, пшеница, рожь, кукуруза.

У растений с сетчатым жилкованием листьев при недостатке марганца появляются разбросанные по листу хлоротичные пятна, в большей степени на нижних листьях, чем на верхних.

У свеклы недостаточность марганца вызывает заболевание, известное под названием пятнистой желтухи. На листьях появляются желтые хлоротичные участки, затем края листьев закручиваются вверх.

У гороха при недостатке марганца развивается пятнистость семян. Это заболевание выражается в появлении на семенах гороха коричневых и черных пятен или даже полостей на внутренних поверхностях семядолей.

Хлороз развивается и при очень высоком содержании марганца, в этом случае марганец окисляет железо в нерастворимую окисную форму и хлороз развивается уже от недостатка железа. Избыток же железа вызывает симптомы недостаточности марганца. Наиболее благоприятные соотношения железа и марганца для лучшего роста растений и общего здорового состояния 2:1.

Культуры, чувствительные к недостатку марганца: зерновые колосовые (пшеница, ячмень, овес), кукуруза, горох, соя, картофель, сахарная свекла, вишня, цитрусовые.

Цинк

Содержание цинка в надземных частях бобовых и злаковых растений составляет 15 - 60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая - в семенах. Цинк поступает в растение в форме катиона Zn 2+ , оказывая многостороннее действие на обмен веществ. Он необходим для функционирования ряда ферментов гликолиза. Роль цинка важна также в образовании аминокислоты триптофана. Именно с этим связано влияние цинка на синтез белков, а также фитогормона индолилуксусной кислоты (ауксина), предшественником которой является триптофан. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. Цинк играет важную роль в метаболизме ДНК и РНК, в синтезе белка и клеточном делении. Является активатором ферментов, предотвращает преждевременное старение клеток. Способствует повышению жаро-, засухо - и морозостойкости растений. Цинк долгое время рассматривался как стимулятор и только к 30 гг. прошлого столетия была установлена безусловная необходимость этого элемента для всех высших растений. Болезнь недостаточности цинка широко распространена среди плодовых деревьев. При недостаточности цинка вместо нормально удлиненных побегов с хорошо развитыми листьями больные растения образуют весной розетку мелких скученных жестких листочков. У разных плодовых болезнь обозначается по-разному: мелколистность, розеточная болезнь, пятнистый хлороз, желтуха. Цинк участвует в окислительно-восстановительных процессах, он связан с превращением соединений, содержащих сульфгидрильную группу. Недостаток цинка вызывает подавление процессов углеводного обмена, так как недостаток цинка сильнее всего сказывается на растениях, богатых углеводами. Также при дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корневой системе, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы - в несколько раз возрастает содержание неорганических фосфатов, снижается содержание фосфора в составе нуклеотидов, липидов и нуклеиновых кислот. Кроме того, в 2-3 раза подавляется скорость деления клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей.

Культуры, особенно чувствительные к недостатку цинка: кукуруза, соя, фасоль, хмель, картофель, лен, овощи зеленые, виноград, яблоня и груша, цитрусовые.

Молибден

Наибольшее содержание молибдена характерно для бобовых (0,5 - 20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2,0 мг молибдена на 1 кг сухой массы. Он поступает в растения как анион MoO 4 2- , концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе сосредоточен в основном в хлоропластах.

Молибден принимает участие в восстановлении нитратов, входя в состав нитратредуктазы, а также является компонентом активного центра нитрогеназы бактероидов, фиксирующих атмосферный азот в клубеньках бобовых.

Способствует увеличению содержания хлорофилла, углеводов, каротина, аскорбиновой кислоты и белковых веществ.

Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию.

При недостатке Mo в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдается деформация листовых пластинок. Молибден, как и железо, необходим для биосинтеза легоглобина (леггемоглобина) - белка-переносчика кислорода в клубеньках бобовых. При дефиците клубеньки приобретают желтый или серый цвет, нормальная же их окраска - красная.

При недостатке молибдена резко падает содержание аскорбиновой кислоты, наблюдаются нарушения в фосфорном обмене растений.

У растений, испытывающих дефицит молибдена, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются.

Тормозится рост растений и из-за нарушения синтеза хлорофилла растения выглядят бледно-зелеными. Эти признаки похожи на признаки недостатка азота.

Культуры, чувствительные к недостатку молибдена: зерновые колосовые, бобовые, сахарная свекла, томаты, капуста, люцерна.

Другие микроэлементы

В составе разных видов растений найдено более 60 элементов, из них, кроме отмеченных выше, натрий, силиций, хлор, кобальт, медь, и алюминий рассматриваются некоторыми авторами также как необходимые.

Находящийся в растении кремний пропитывает клеточные стенки и делает их твердыми и устойчивыми против повреждения насекомыми и предохраняет клетки против проникновения грибной инфекции. Также кремний необходим для роста диатомовых водорослей.

Хлор считается стимулятором активности ферментов. Важное значение хлор имеет для зеленых фотосинтезирующих растений. Имеются сведения о влиянии хлора на азотный обмен. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Действие алюминия рассматривается как катализатора. Кроме того, при некотором избыточном накоплении в растении алюминия меняется окраска цветов. Так, например, под влиянием накопления алюминия в растении Hydrangea нормально красные или белые цветы изменяются в синие или фиолетовые.

Натрий накапливается в растениях в значительных количествах, но в жизни их существенной роли не играет, так как может быть полностью исключен из питательного раствора. Однако для галофитов, растений засоленных мест, присутствие натрия благоприятствует росту.

Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий. При дефиците кобальта подавляется синтез леггемоглобина, снижается синтез белка, и уменьшаются размеры бактероидов. Это говорит в пользу необходимости кобальта. Установлена потребность в кобальте для высших растений, не способных к азотфиксации. Показано влияние кобальта на функционирование фотосинтетического аппарата, синтез белка, его связь с ауксиновым обменом. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала.

Медь активизирует образование белков и витаминов группы В. Как и цинк, активирует фермент, предотвращает преждевременное старение клеток растения. Принимает участие в метаболизме белков и углеводов в растении. Существенно повышает иммунитет растения грибковым и бактериальным заболеваниям. Этого элемента очень мало в песчаных и торфянистых почвах. Недостаток меди проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания. Наблюдается отмирание краев молодых листьев с последующим их хлорозом и скручиванием; замедляется высвобождение пыльцовых зерен, вследствие чего снижается опыление растений. Наблюдается существенное снижение урожайности культуры (если отсутствуют визуальные признаки дефицита микроэлемента); у злаковых культур может наблюдаться полегание; у плодовых культур может наблюдаться поникание ветвей и кроны.



Татьяна Рудакова

Основными веществами, из которых состоит протоплазма клеток (как раз в них происходят важнейшие для жизни растений биохимические и физиологические процессы), являются белки. Белки состоят из углерода, кислорода, водорода, азота, фосфора, серы, железа и других элементов. В крайне небольших количествах в растениях присутствуют микроэлементы: марганец, медь, цинк, молибден, бор и др.

Углерод растения получают из двух источников: углекислого газа воздуха в процессе фотосинтеза и из органических веществ почвы.

Кислород поступает в растения из воздуха при их дыхании и, частично, с водой из почвы.

Азот, калий, фосфор, железо, серу и другие элементы растения получают из почвы, где они находятся в виде минеральных солей и входят в состав органических веществ (аминокислот, нуклеиновых кислот и витаминов). Через кореньрастения поглощают из почвы главным образом ионы минеральных солей, а также некоторые продукты жизнедеятельности почвенных микроорганизмов и корневые выделения других растений. Поглощённые соединения азота, фосфора и серы взаимодействуют с притекающими из листьев продуктами фотосинтеза с образованием аминокислот, нуклеотидов и других органических соединений. По сосудам растения элементы в форме ионов (калий, кальций, магний, фосфор) или органических молекул (азот, сера) в результате действия корневого давления и транспирации передвигаются в листья и стебли. В корне синтезируются также алкалоиды (например, никотин), гормоны роста (кинины, гиббереллины) и другие физиологически активные вещества. Корни выделяют также ауксины и другие вещества, стимулирующие рост растений.

Основная масса химических элементов, необходимых растениям для питания, находится в почве в нерастворимых соединениях, потому недоступна растениям для усвоения. Лишь небольшая часть веществ, содержащих питательные элементы, может растворяться в воде или слабых кислотах и усваиваться растениями. Нерастворимые питательные вещества принимают доступную для усвоения форму под воздействием почвенных микроорганизмов. Микроорганизмы также выделяют антибиотики, витамины и другие полезные растениям вещества.

Макроэлементы - это элементы, которые нужны растениям в значительных количествах, их содержание в растении достигает 0,1 - 5 %. К макроэлементам относятся азот, калий, фосфор, сера, кальций, магний.

Азот (N) входит в состав аминокислот, из которых состоят молекулы белка. Также он входит в состав хлорофилла, участвующего в фотосинтезе растений, и ферментов. Азотное питание сказывается на росте и развитии растений, при его недостатке растения слабо развивают зеленую массу, плохо ветвятся, их листья мельчают и быстро желтеют, цветки не раскрываются, засыхают и опадают.

Источником азота для питания растений могут служить соли азотной и азотистой кислоты, аммоний, карбамид (мочевина).

Калий (K) в растениях находится в ионной форме и не входит в состав органических соединений клетки. Калий помогает растениям усваивать углекислый газ из воздуха, способствует передвижению в растении углеводов; легче переносить засуху, поскольку удерживает в растении воду. При недостаточном калийном питании растение быстрее поражается различными заболеваниями. Дефицит калия вызывает ослабление деятельности некоторых ферментов, что приводит к нарушениям в белковом и водном обмене растения. Внешне признаки калийного голодания проявляются в том, что старые листья преждевременно желтеют, начиная с краев, затем края листьев буреют и отмирают. Поглощение калия растением впрямую зависит от прироста корневой массы: чем она выше, тем растение больше поглощает калия.

К калийным минеральным удобрениям относится хлористый калий и сернокислый калий.

Фосфор (P) входит в состав нуклеопротеидов, главной составной части клеточного ядра. Фосфор ускоряет развитие культур, повышает выход цветочной продукции, позволяет растениям быстро адаптироваться к низким температурам.

К фосфорным минеральным удобрениям относятся суперфосфат, фосфоритная мука, соли ортофосфорной кислоты. Необходимо учитывать только, что в нейтральной и щелочной среде образуются малорастворимые соли, фосфор которых недоступен растениям.

Сера (S) входит в состав белков, ферментов, других органических соединений клетки растений. При недостатке серы молодые листья равномерно желтеют, жилки становятся пурпурными. Постепенно теряют зеленую окраску и более старые листья.

Специальных серных удобрений обычно не вносят, т. к. она содержится в суперфосфате, сернокислом калии, навозе.

Кальций (Ca) необходим как надземным органам, так и корням растения. Его роль связана с фотосинтезом растения и развитием корневой системы (при недостатке кальция корни утолщаются, не образуется боковых корешков и корневых волосков). Недостаток кальция проявляется на концах побегов. Молодые листья светлеют, на них появляются светло-желтые пятна. Края листьев загибаются вниз, приобретая вид зонтика. При сильном дефиците кальция погибает верхушка побега.

Магний (Mg) входит в состав хлорофилла, активирует фермент, преобразующий углекислый газ при фотосинтезе. Участвует в реакциях переноса энергии.

Признаки недостатка магния начинают проявляться с нижних листьев, затем распространяются и на верхние. При недостатке этого элемента хлороз имеет характерный вид: у краев листа и между его жилками зеленая окраска изменяется не только на желтую, но и на красную и фиолетовую. Жилки и прилегающие к ним участки остаются зелеными. Листья при этом часто куполообразно выгибаются, так как у листа загибаются кончики и края.

Магниевым удобрением является препарат Калимаг .

На рынке макроудобрений присутствует большое количество удобрений, в которых бывает очень трудно разобраться и выбрать что-то подходящее. Качественно все удобрения отличаются тем, каков химический состав их компонентов, то есть насколько вещества, содержащие питательные элементы, быстро усваиваются растениями. Стоит отдавать предпочтение тем препаратам, которые содержат растворимые соли: монокалийфосфат, моноаммонийфосфат, сульфат калия, нитрат калия.

Микроэлементы в организме растения содержатся в значительно меньшем количестве, от 0,0001 до 0,01 %. К ним относятся: железо, марганец, медь, цинк, молибден, бор, никель, кремний, кобальт, селен, хлор и др. Как правило, это металлы переходной группы периодической системы элементов.

Микроэлементы не влияют на осмотическое давление клетки, не участвуют в образовании протоплазмы, их роль преимущественно связана с деятельностью ферментов. Все ключевые метаболические процессы, такие как реакции синтеза белков и углеводов, распада и обмена органических веществ, фиксация и ассимиляция некоторых главных питательных веществ (например, азота и серы) происходят при участии ферментов, которые обеспечивают их протекание при обычной температуре.

С помощью окислительно-восстановительных процессов ферменты оказывают регулирующее действие на дыхание растений, поддерживая его при неблагоприятных условиях на оптимальном уровне.

Под действием микроэлементов возрастает устойчивость растений к грибным и бактериальным болезням и таким неблагоприятным условиям внешней среды, как недостаток влаги в почве, пониженные или повышенные температуры, тяжелые условия зимовки.

Предполагается, что и сам синтез ферментов растений протекает при участии микроэлементов.

Исследования в области определения роли различных микроэлементов в метаболизме растений начались еще в середине 19 века. Детальное изучение началось с 30-х годов 20 века. Функция некоторых из микроэлементов до сих пор неясна и исследования в этой области продолжаются.

Железо (Fe) содержится в хлоропластах, является необходимым элементом многих ферментов. Участвует в важнейших биохимических процессах: в фотосинтезе и синтезе хлорофилла, метаболизме азота и серы, дыхании клетки, ее росте и делении.

Дефицит железа в растениях часто обнаруживается при избытке кальция в почве, что случается на карбонатных или кислых почвах после известкования. При недостатке железа развивается межжилковый хлороз молодых листьев. При нарастающем дефиците железа могут светлеть и жилки, лист бледнеет полностью.

Марганец (Mn) преобладает в метаболизме органических кислот и азота. Входит в состав ферментов, ответственных за дыхание растения, участвует в синтезе других ферментов. Активирует ферменты, ответственные за окисление, восстановление и гидролиз. Впрямую влияет на преобразование света в хлоропласте. Играет важную роль в механизме действия индолилуксусной кислоты на рост клеток. Участвует в синтезе витамина С.

Признаки недостатка марганца проявляются на молодых по возрасту листьях. Хлороз проявляется прежде у основания листа, а не на его концах (что напоминает дефицит калия). Затем, при нарастающем недостатке марганца, появляется межжилковый хлороз и, после отмирания хлорозной ткани, лист покрывается пятнами разной формы и окраски. Тургор листьев может быть ослабленным.

Марганцевая недостаточность усиливается при низкой температуре и высокой влажности почвы.

Медь (Cu) участвует в метаболизме белков и углеводов, активирует некоторые ферменты, участвует в фотосинтезе, важна в азотном обмене. Повышает устойчивость растения к грибным и бактериальным заболеваниям, защищает хлорофилл от распада. Для жизнедеятельности растения медь не может быть заменена другим элементом.

При недостатке меди на кончиках молодых листьев появляются белые пятна, они теряют тургор, опадают завязи и цветки. Растение имеет карликовый вид.

Цинк (Zn) участвует в образовании триптофана, предшественника ауксина (гормона роста), и в синтезе протеинов. Необходим для преобразования и потребления крахмала и азота. Повышает сопротивляемость растения к грибным заболеваниям, при резкой смене температуры повышает жаро- и морозоустойчивость растения.

При недостатке цинка в растениях нарушается синтез витаминов В1 и В6. Недостаток цинка проявляется чаще на старых нижних листьях, но, с нарастанием дефицита, желтеют и более молодые листья. Они становятся пятнистыми, затем ткань этих участков проваливается и отмирает. Молодые листья могут быть мелкими, их края закручиваются кверху.

Цинковые удобрения повышают засухо-, жаро- и холодоустойчивость растений.

Молибден (Mо) входит в состав фермента, превращающего нитраты в нитриты. Необходим растению для фиксации азота. Под его влиянием в растениях увеличивается содержание углеводов, каротина и аскорбиновой кислоты. Увеличивается содержание хлорофилла и активность фотосинтеза.

При недостатке молибдена у растения нарушается азотный обмен, у старых, а затем у средних по возрасту листьев появляется крапчатость. Участки такой хлоротичной ткани затем вздуваются, края закручиваются вверх. На верхушках листьев и по их краям развивается некроз.

Бор (B) участвует в синтезе РНК и ДНК, в образовании гормонов. Необходим для нормальной жизнедеятельности точек роста растения, т. е. самых молодых его частей. Он влияет на синтез витаминов, цветение и плодоношение, созревание семян. Усиливает отток продуктов фотосинтеза из листьев в луковицы и клубни. Необходим для водообеспечения растения. Бор необходим растениям в течение всего вегетационного периода. Для жизнедеятельности растения бор не может быть заменен другим элементом.

При недостатке бора у растений поражается точка роста, отмирают как верхушечные почки, так и молодые корешки, разрушается сосудистая система. Молодые листья бледнеют, становятся курчавыми. Усиленно развиваются боковые побеги, но они очень ломкие, цветки опадают.

Хлор (Cl) является активатором ферментов, которые при фотосинтезе высвобождают кислород из воды. Регулятор тургора клетки, способствует засухоустойчивости растений.

У растений чаще проявляются признаки не недостатка, а избытка хлора, выраженные в преждевременном засыхании листьев.

Некоторые макро- и микроэлементы могут взаимодействовать, что приводит к изменению их доступности для растения. Вот некоторые примеры такого влияния:

Цинк-фосфор , высокий уровень доступного фосфора провоцирует дефицит цинка.

Цинк-азот , высокий уровень азота провоцирует дефицит цинка.

Железо-фосфор , избыток фосфора приводит к образованию нерастворимого фосфата железа, т.е. недоступности железа для растения.

Медь-фосфор, избыток фосфора приводит к образованию нерастворимого фосфата меди, то есть возникновению дефицита меди.

Молибден-сера , усвоение молибдена растениями уменьшается при избытке серы.

Цинк-магний , при использовании карбоната магния происходит увеличение pH почвы и образование нерастворимых соединений цинка.

Железо-марганец , избыток марганца препятствует продвижению железа от корней растения вверх, приводя к железистому хлорозу.

Железо-молибден , в низких концентрациях молибден способствует усвоению железа. При высоких же концентрациях взаимодействует с ним, образуя нерастворимый молибдат железа, что приводит к дефициту железа.

Медь-азот , внесение больших доз азотных удобрений повышает потребность растений в меди и усиливает симптомы медной недостаточности.

Медь-железо, избыток меди провоцирует дефицит железа, особенно у цитрусовых.

Медь-молибден, избыток меди препятствует усвоению молибдена и повышает уровень нитратов в растении.

Медь-цинк , избыток цинка приводит к дефициту меди. Механизм этого влияния в настоящее время не изучен.

Бор-кальций , имеются данные, что при недостатке бора растения не могут нормально использовать кальций, который в почве может находиться в достаточном количестве.

Бор-калий, размеры поглощения и накопления бора растениями возрастают с увеличением в почве калия.

В настоящее время ведутся работы по изучению роли в физиологии растений таких элементов, как мышьяк (As), ртуть (Hg), фтор (F), иод (I) и др. Эти элементы были обнаружены в растениях в еще более незначительных количествах. Например, в некоторых антибиотиках, вырабатываемых растениями.

Дефицит элементов впрямую связан со свойством почвы: на очень кислых или щелочных почвах растения, как правило, испытывают дефицит микроэлементов. К этому же приводит избыток в них фосфатов, азота, карбоната кальция, оксидов железа и марганца.

Недостаток микроэлементов в почве не обязательно приводит к гибели растения, но является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма.

Симптомы недостаточности конкретного элемента могут быть весьма характерны и наиболее часто проявляются в хлорозе. Хотя объективно для выявления дефицита какого-то элемента требуется анализ почв и тканей растений.

Диагностика недостаточности отдельных элементов по внешнему виду растения для неспециалиста представляет трудности:

Изменение внешнего вида растения, сходного с недостатком элементов, может быть вызвано поражением вредителями, болезнями или неблагоприятными факторами: температурой, заливом или пересушенностью земляного кома, так же недостаточной атмосферной влажностью;

Внешние признаки минерального голодания, вызванного дефицитом конкретного элемента, у разных растений могут несколько отличаться (например, симптомы недостатка серы у винограда и бобовых). А конкретно для хой этот вопрос вообще не изучен;

В случае недостатка нескольких питательных элементов внешние признаки накладываются, растение восполняет прежде всего недостаток того элемента, которого недостает больше. Признаки недостатка другого элемента остаются, внешне хлороз растения продолжается;

Для определения того, какого элемента растению не хватает, необходима динамика в изменении внешних признаков, а она различна при нехватке разных элементов. Любители на изменения в характере проявлений обращают мало, что диагностику затрудняет;

Питательные элементы в почве присутствуют, но недоступны растению из-за ее неподходящей кислотности.

Для того, чтобы по внешним признакам определить, какого конкретно элемента питания растению недостает, вначале следует обратить внимание на то, на каких листьях, молодых или старых, проявляются симптомы дефицита.

Если они проявляются на старых листьях, можно предположить недостаток азота, фосфора, калия, цинка или магния. Эти элементы при недостатке их в растении перемещаются от старых частей к молодым, растущим. И в них признаков голодания не заметно, в то время как на нижних листьях проявляется хлороз.

Если симптомы дефицита проявляются в точках роста или на молодых листьях, можно предположить недостаток кальция, бора, серы, железа, меди и марганца. По-видимому, эти элементы не способны перемещаться по растению из его одной части в другую. И если в почве этих элементов мало, растущие части их не получают.

Поэтому любителям в ситуации, когда у их растений начинается хлороз, но они уверены, что растение здорово и находится в благоприятных условиях, следует провести обработку своего растения целым комплексом макро- или микроэлементов. При выборе препаратов следует понимать, что эффективность воздействия микроэлемента на растение прямо зависит от формы, в которой он пребывает. И недостаточное поступление микроэлементов в растение нередко связано с нахождением их в почве в нерастворимой, недоступной для растения форме.

О том, какие виды микроудобрений предлагает рынок.

Прежде всего, на рынке присутствует множество микроудобрений, представляющих собой растворимые минеральные (неорганические)соли этих элементов (сульфат магния, сульфат цинка и пр.). Их применение относительно недорого, но имеет ряд серьезных недостатков:

Эти соли растворимы, то есть доступны растениям, только в почвах со слабокислой и кислой почвой;

При использовании растворимых солей микроэлементов происходит засаливание почвы различными катионами и анионами (Na, Cl);

При смешивании различных солей металлов возможно их взаимодействие с образованием нерастворимых солей, то есть недоступных растениям соединений.

Потому более перспективным является применение натриевых и калийных солей гуминовых кислот. Они являются слабыми природными хелатами и хорошо растворимы.

Гуминовые препараты Гумат+7 , Гумисол , ГроуАП Энерджи , Лигногумат , Вива и др. содержат 60-65% гуматов (в сухом виде) и семь основных микроэлементов (Fe, Си, Zn, Mn, Mo, Co, В) в виде комплексных соединений с гуминовыми кислотами. Они могут содержать макроэлементы и витамины. Получают эти удобрения обработкой торфа или бурого угля раствором щелочи при высокой температуре и извлечением из него основного продукта. По своей сути эти удобрения являются органическими, микроэлементов в них не содержится больше, чем в навозе, и они не могут рассматриваться полноценной микроэлементной подкормкой.

Наибольшего внимания заслуживают микроэлементы в хелатной форме (хелаты) . И прежде, чем говорить о конкретных названиях микроудобрений в этой форме, следует остановиться на том, что такое хелаты. Они получаются при взаимодействии металлов (микроэлементов) с природными или синтетическими органическими кислотами определенного строения (их называют комплексонами, хелантами или хелатирующими агентами). Получающиеся устойчивые соединения называют хелатами (от греч. «chele» — клешня) или комплексонатами.

При взаимодействии с металлом органическая молекула как бы захватывает металл в «клешню», а мембрана клетки растения распознает этот комплекс как вещество, родственное своим биологическим структурам, и далее ион металла усваивается растением, а комплексон распадается на более простые вещества.

Основная идея применения комплексонов для улучшения растворимости удобрительных солей построена на том, что многие хелаты металлов имеют большую растворимость (иногда на порядок), чем соли неорганических кислот. Учитывая также, что в хелате металл находится в полуорганической форме, для которой характерна высокая биологическая активность в тканях растительного организма, можно получить удобрение гораздо лучше усваиваемое растением.

Кислоты, наиболее часто используемые при производстве хелатных микроудобрений, можно разделить на две группы. Это комплексоны, содержащие в своем составе карбоксильные группы :

  • ЭДТА (этилендиаминтетрауксусная кислота), синоним: комплексон-III, трилон-Б, хелатон III.
  • ДТПА (диэтилентриаминпентауксусная кислота)
  • ДБТА (дигидроксибутилендиаминтетрауксусная кислота)
  • ЭДДНМА (этилендиаминди (2-гидрокси-4-ме-тилфенил) уксусная кислота)
  • ЛПКК (лигнинполикарбоксиловая кислота)
  • НТА (нитрилотриуксусная кислота)
  • ЭДДЯ (этилендиаминдиянтарная кислота)

и комплексоны на основе фосфоновых кислот :

  • ОЭДФ (оксиэтилидендифосфоновая кислота)
  • НТФ (нитрилтриметиленфосфоновая кислота)
  • ЭДТФ (этилендиаминтетрафосфоновая кислота)

Из комплексонов, содержащих карбоксильные группы, наиболее оптимальной является ДТПА , она позволяет использовать комплексонаты (особенно железа) на карбонатных почвах и при рН выше 8, где другие кислоты малоэффективны.

На нашем рынке, как и за рубежом (Голландия, Финляндия, Израиль, Германия), подавляющее большинство препаратов основывается на ЭДТА . Это связано, прежде всего, с ее доступностью и относительно низкой стоимостью. Хелаты на ее основе можно использовать на почвах с рН меньше 8 (комплекс железа с ЭДТА эффективен при борьбе с хлорозом только на умеренно-кислых почвах; в щелочной же среде он нестабилен). Кроме того хелаты с ЭДТА разлагаются почвенными микроорганизмами, что приводит к переходу микроэлементов в нерастворимую форму. Данные препараты проявляют противовирусную активность.

Хелаты на основе ЭДДНМА являются высокоэффективными, их можно использовать в интервалах рН от 3,5 до 11,0. Однако стоимость этого комплексона, а значит и микроудобрения, велика.

Из комплексонов, содержащих фосфоновые группы, наиболее перспективной является ОЭДФ . На ее основе могут быть получены все индивидуальные комплексонаты металлов, применяемых в сельском хозяйстве, а также композиции различного состава и соотношения. По своей структуре она наиболее близка к природным соединениям на основе полифосфатов (при ее разложении образуются химические соединения, легко усваиваемые растениями). Хелаты на ее основе можно использовать на почвах с рН 4,5-11. Отличительная черта этого комплексона в том, что он может, в отличие от ЭДТА, образовывать устойчивые комплексы с молибденом и вольфрамом. Однако ОЭДФ является очень слабым комплексоном для железа, меди и цинка, в прикорневой зоне они замещаются кальцием и выпадают в осадок. По этой же причине недопустимо приготовление рабочих растворов хелатов на основе ОЭДФ в жесткой воде (ее нужно подкислить несколькими каплями лимонной или уксусной кислоты). ОЭДФ устойчива по отношению к действию микроорганизмов почвы.

В настоящее время ведутся исследования хелатирующих свойств гумусовых (гуминовых и фульвокислот) а так же аминокислот и коротких пептидов .

Однозначного ответа на вопрос, какой комплексон следует использовать для получения биологически активных микроэлементов, дать невозможно: сами комплексоны для растений практически инертны. Главная роль принадлежит катиону металла, а комплексон играет роль транспортного средства, обеспечивающего доставку катиона и его устойчивость в почве и питательных растворах. Но именно комплексоны определяют в конечном счете эффективность удобрения в целом, то есть степень усвоения микроэлементов растениями. Если сравнивать усвоение растениями микроэлементов из неорганических солей и их хелатных соединений, то соединения на основе лигнинов (например, Брексил от Валагро) усваиваются в 4 раза лучше, на основе цитратов в 6 раз, а на основе ЭДТА, ОЭДФ, ДТПА - в 8 раз лучше.

Согласно Директиве Евросоюза ЕС 2003/2003 от 13 октября 2003г. (это документ, регламентирующий деятельность всех без исключения европейских производителей минеральных удобрений), к свободному товарообороту в странах ЕС допустимы следующие хелатирующие агенты: EDTA, DTPA, EDDHA, HEEDTA, EDDHMA, EDDCHA, EDDHSA. Все другие виды хелатирующих агентов подлежат обязательной регистрации в соответствующих государственных инстанциях отдельно в каждой стране.

Согласно Директиве, константа устойчивости хелатов микроэлементов, выраженная в %, должна быть не меньше 80. В химии комплексных соединений константа устойчивости характеризует прочность комплексного соединения и указывает, каково соотношение хелатированного микроэлемента и его свободного катиона в удобрении. В рекламных же материалах появился неизвестный химикам термин «процент хелатизации».

Следует с осторожностью относиться к рекламной информации. Не стоит основывать свои знания о продукте исключительно на рекламных проспектах - производитель удобрений не несет ответственности за описанную в рекламе информацию. Основной и наиболее достоверной информацией о продукте является его ЭТИКЕТКА. Производитель удобрений обязан на этикетке указать, какой хелатирующий агент использовался для образования хелата того или иного микроэлемента.

Производитель, особенно отечественный, тем не менее не всегда указывает на упаковке название комплексона, который он использовал для производства микроудобрения. Но, неукоснительно следуя инструкции, удобрение можно максимально эффективно использовать: если указано, что предпочтительнее листовая обработка, нужно этому следовать, видимо эти хелаты сильно зависят от кислотности почвы или разрушаются почвенной микрофлорой. Если возможен и полив растений, значит хелаты стойки к перечисленным факторам.

Способы применения микроудобрений могут быть различными:

Предпосевная обработка семян (путем опыления или увлажнения);

Некорневая подкормка в течение вегетации (так называемый фолиарный или листовой метод);

Полив рабочими растворами микроудобрений.

Самыми рациональными и экономически выгодными являются первые два приема. В этих случаях растения используют 40-100% всех микроэлементов, но при внесении их в почву растения усваивают лишь несколько процентов, а в некоторых случаях даже десятые доли процента от внесенного в почву микроэлемента.

По физическому состоянию микроудобрения могут быть:

Жидкими, это растворы или суспензии с содержанием металлов 2-6%;

Твердыми, это кристаллические или порошкообразные вещества с содержанием металлов 6-15%.

По составу микроудобрения бывают:

1. Удобрения NPK + микроэлементы в хелатной форме, которые содержат различные комбинации макроэлементов N, P, K (возможны так же Mg, Ca, S) и фиксированное во всем ассортиментном ряду количество микроэлементов.

2. Препараты, содержащие только микроэлементы, которые в свою очередь тоже подразделяются на:

  • комплексные - содержащие композицию микроэлементов в определенной пропорции;
  • моноудобрения (хелаты моноэлементов) - соединения отдельных металлов: железа, цинка, меди. Как правило, они используются при появлении симптомов болезней, связанных с недостатком конкретного элемента.

3. Удобрения, содержащие помимо микроэлементов биологически активные вещества: стимуляторы, ферменты, аминокислоты и пр.

Из удобрений NPK + микроэлементы в продаже есть несколько препаратов компании ННПП «Нэст М» (Россия): Цитовит (N, P, K, Mg, S, Fe, Mn, B, Zn, Cu, Mn, Co) и Силиплант (Si, K, Fe, Mg, Cu, Zn, Mn, Mo, Co, B). Нужно заметить, что это первое отечественное микроудобрение, которое содержит кремний (калий в препарате присутствует для более эффективного его усвоения). Он выпускается в нескольких наименованиях с разным соотношением микроэлементов.

Буйский химический завод (Россия) изготавливает препарат Акварин (№5, №13, №15).

Компания ВАЛАГРО (Италия) предлагает удобрения Мастер (16 наименований, из которых наиболее интересны «18+18+18+3», «13+40+13», «15+5+30+2», «3+11+38+4»), Плантафол (в единой пропорции микроэлементов + вариации NPK) и Брексил Микс .

Хотелось бы отметить, что данные удобрения надо рассматривать скорее как корректоры минерального питания, а не как источник микроэлементов.

Из препаратов, содержащих только микроэлементы , ННПП «Нэст М» (Россия) предлагает Феровит (содержание хелатного железа не менее 75 г/л, N-40 г/л).

Фирма Реаком (Украина) предлагает микроудобрение Реаком-Миком (комплексоном является ОЭДФ) с разным соотношением основных микроэлементов (Fe, Mn, Zn, Cu, Co, Mo) и B , предназначенное под потребности самых различных культур: томатов, огурцов, винограда, цветочных культур.

Компания ВАЛАГРО производит так же микроудобрения в виде однокомпонентных формул, таких как Брексил Zn , Брексил Fe , Брексил Mg , Брексил Mn , Брексил Сa (хелаты этих удобрений изготовлены на основе комплексона ЛПКК).

К микроудобрениям с добавлением биостимуляторов относится препарат от фирмы Реаком (Украина) под торговой маркой Реастим, который представляет собой комплекс микроудобрений с известными стимуляторами роста (гетеро- и гипероауксинами, янтарной кислотой, гиббериллином, гуминовыми кислотами и др.).

ООО «Наномикс» (Украина) выпускает жидкое микроудобрение Наномикс , содержащее хелаты Fe, Mn, Zn, Cu, Co, Mg, Ca, Мо, (плюс В и S) с добавкой природных биостимуляторов-адаптогенов на базе поликарбоновых кислот. В качестве комплексонов использованы ОЭДФ и ЭДДЯ (что позволяет использовать удобрение на кислых, нейтральных и слабо щелочных почвах). Препарат для обработки семян включает так же стимулятор роста корневой системы - гетероауксин.

Питание растений зависит как от внешних факторов (свет, тепло, состав почвы), так и от того, в какой фазе развития находится растение (в фазе роста, цветения, состоянии покоя). Поэтому при покупке удобрений следует обращать внимание на то, в каком соотношении в нем находятся питательные элементы. Так повышенное содержание азота необходимо растению весной, в фазе активного роста. Летом для цветения и плодоношения в удобрении должно содержаться больше фосфора. Осенью для вызревания молодых побегов в удобрении совсем не должно быть азота, а калий должен присутствовать в повышенной концентрации. Зимой комнатные растения удобряются крайне редко (и в низкой концентрации), т. к. в состоянии покоя растение не потребляет много питательных веществ. Их внесение может обжечь корни или в условиях повышенной температуры и короткого светового дня спровоцирует рост, который будет ослабленным.