Система децентрализованного теплоснабжения: назначение и оборудование. Дальнейшее повышение энергетической эффективности децентрализованных систем теплоснабжения требует проведения научно-технических исследований с целью определения оптимальных режимов ра

Децентрализованные системы теплоснабжения

Децентрализованные потребители, которые из-за больших расстояний от ТЭЦ не могут быть охвачены централизованным теплоснабжением, должны иметь рациональное (эффективное) теплоснабжение, отвечающее современному техническому уровню и комфортности.

Масштабы потребления топлива на теплоснабжение весьма велики. В настоящее время теплоснабжение промышленных, общественных и жилых зданий осуществляется примерно на 40+50% от котельных, что является не эффективным из-за их низкого КПД (в котельных температура сгорания топлива составляет примерно 1500 ОС, а тепло потребителю выдается при существенно более низких температурах (60+100 ОС)).

Таким образом, нерациональное использование топлива, когда часть тепла вылетает в трубу, приводит к истощению запасов топливно-энергетических ресурсов (ТЭР).

Постепенное истощение запасов топливно-энергетических ресурсов в европейской части нашей страны потребовало в свое время развития топливно-энергетического комплекса в ее восточных районах, что резко увеличило затраты на добычу и транспорт топлива. В этой ситуации необходимо решить важнейшую задачу по экономии и рациональному использованию ТЭР, т.к. запасы их ограничены и по мере их уменьшения стоимость топлива будет неуклонно расти.

В связи с этим эффективным энергосберегающим мероприятием является разработка и внедрение децентрализованных систем теплоснабжения с рассеянными автономными источниками тепла.

В настоящее время наиболее целесообразным являются децентрализованные системы теплоснабжения, базирующиеся на нетрадиционных источниках тепла, таких как: солнце, ветер, вода.

Ниже рассмотрим только два аспекта вовлечения нетрадиционной энергетики:

  • * теплоснабжение на базе тепловых насосов;
  • * теплоснабжение на базе автономных водяных теплогенераторов.

Теплоснабжение на базе тепловых насосов. Основное назначение тепловых насосов (ТН) -отопление и горячее водоснабжение с использованием природных низкопотенциальных источников тепла (НПИТ) и сбросного тепла промышленного и коммунально-бытового сектора.

К достоинствам децентрализованных тепловых систем относится повышенная надежность теплоснабжения, т.к. они не связаны тепловыми сетями, которые в нашей стране превышают 20 тыс. км, причем большая часть трубопроводов находится в эксплуатации сверх нормативного срока службы (25 лет), что приводит к авариям . Кроме этого, строительство протяженных теплотрасс сопряжено со значительными капитальными затратами и большими потерями тепла. Тепловые насосы по принципу действия относятся к трансформаторам тепла, в которых изменение потенциала тепла (температуры) происходит в результате подведенной извне работы .

Энергетическая эффективность тепловых насосов оценивается коэффициентами трансформации, учитывающими полученный «эффект», отнесенный к затраченной работе и КПД.

Полученный эффект - это количество тепла Qв, которое производит ТН. Количество тепла Qв, отнесенное к затраченной мощности Nэл на привод ТН, показывает, сколько единиц тепла получается на единицу затраченной электрической мощности. Это отношение м=0В/Нэлй

называют коэффициентом преобразования или трансформации тепла, который для ТН всегда больше 1. Некоторые авторы называют этот коэффициент КПД, но коэффициент полезного действия не может быть больше 100%. Ошибка здесь в том, что тепло Qв (как неорганизованная форма энергии) делится на Nэл (электрическую, т.е. организованную энергию) .

КПД же должен учитывать не просто количество энергии, а работоспособность данного количества энергии. Следовательно, КПД - это отношение работоспособностей (или эксергий) любых видов энергии :

где: Еq - работоспособность (эксергия) тепла Qв; ЕN - работоспособность (эксергия) электрической энергии Nэл.

Так как тепло всегда связано с температурой, при которой это тепло получается, то следовательно работоспособность (эксергия) тепла зависит от температурного уровня T и определяется:

где ф - коэффициент работоспособности тепла (или «фактор Карно»):

q=(Т-Тос)/Т=1-Тос/

где Тос - температура окружающей среды.

Для каждого теплового насоса эти показатели равны:

1. Коэффициент трансформации тепла:

м=qв/l=Qв/Nэл¦

з=СВ(фт)В//=Й*(фт)В>

Для реальных ТН коэффициент трансформации составляет м=3-!-4, в то время как з=30-40%. Это означает, что на каждый затраченный кВт.ч электрической энергии получается QB=3-i-4 кВт.ч тепла. Это является основным преимуществом ТН перед другими способами получения тепла (электрический нагрев, котельная и т.п.).

За несколько последних десятков лет во всем мире резко возросло производство тепловых насосов, но в нашей стране ТН до настоящего времени не нашли широкого применения.

Причин здесь несколько.

  • 1. Традиционная ориентация на централизованное теплоснабжение.
  • 2. Неблагоприятное соотношение между стоимостью электроэнергии и топлива.
  • 3. Изготовление ТН проводится, как правило, на базе наиболее близких по параметрам холодильных машин, что не всегда приводит к оптимальным характеристикам ТН. Проектирование серийных ТН на конкретные характеристики, принятое за рубежом, существенно повышает как эксплуатационные, так и энергетические характеристики ТН.

Выпуск теплонасосного оборудования в США, Японии, ФРГ, Франции, Англии и других странах базируется на производственных мощностях холодильного машиностроения. ТН в этих странах применяются, в основном, для теплоснабжения и горячего водоснабжения жилищного, торгового и промышленного секторов.

В США, например, эксплуатируется свыше 4 млн единиц тепловых насосов небольшой, до 20 кВт, производительности тепла на базе поршневых или ротационных компрессоров. Теплоснабжение школ, торговых центров, бассейнов осуществляется ТН теплопроизводительностью 40 кВт, выполняемыми на базе поршневых и винтовых компрессоров. Теплоснабжение районов, городов - крупными ТН на базе центробежных компрессоров с Qв свыше 400 кВт тепла. В Швеции из 130 тыс. работающих ТН более 100 -- теплопроизводительностью 10 МВт и более. В Стокгольме теплоснабжение на 50% производится от ТН.

В промышленности тепловые насосы утилизируют низкопотенциальное тепло производственных процессов. Анализ возможности применения ТН в промышленности, проведенный на предприятиях 100 шведских компаний, показал, что наиболее подходящей сферой для применения ТН являются предприятия химической, пищевой и текстильной промышленности.

В нашей стране вопросами применения ТН начали заниматься с 1926 г. . В промышленности с 1976 г. работали ТН на чайной фабрике (г. Самтредия, Грузия) , на Подольском химико-металлургическом заводе (ПХМЗ) с 1987 г. , на Сагареджойском молочном комбинате, Грузия, в подмосковном молочно-животноводческом совхозе «Горки-2» с 1963 г. Кроме промышленности ТН в то время начали применяться в торговом центре (г. Сухуми) для теплохладоснабжения, в жилом доме (пос. Бу-курия, Молдова), в пансионате «Дружба» (г. Ялта), климатологической больнице (г. Гагра), курортном зале Пицунды.

В России в настоящее время ТН изготавливаются по индивидуальным заказам различными фирмами в Нижнем Новгороде, Новосибирске, Москве. Так, например, фирмой «Тритон» в Нижнем Новгороде выпускаются ТН теплопроизводительностью от 10 до 2000 кВт с мощностью компрессоров Nэл от 3 до 620 кВт.

В качестве низкопотенциальных источников тепла (НПИТ) для ТН наибольшее распространение находит вода и воздух. Отсюда наиболее часто применяемыми схемами ТН являются «вода-воздух» и «воздух-воздух». По таким схемам ТН выпускают фирмы: «Сагriг«, «Lеnnох», Westinghous», «General Electrik» (США), «Нitachi», «Daikin» (Япония), «Sulzer» (Швеция), «ЧКД» (Чехия), «Klimatechnik» (Германия). В последнее время в качестве НПИТ используют сбросные промышленные и канализационные стоки.

В странах с более суровыми климатическими условиями целесообразно применять ТН совместно с традиционными источниками тепла. При этом в отопительный период теплоснабжение зданий осуществляется преимущественно от теплового насоса (80-90% годового потребления), а пиковые нагрузки (при низких температурах) покрываются электрокотлами или котельными на органическом топливе.

Применение тепловых насосов приводит к экономии органического топлива. Это особенно актуально для удаленных регионов, таких как северные районы Сибири, Приморья, где имеются гидроэлектростанции, а транспортировка топлива затруднена. При среднегодовом коэффициенте трансформации м=3-4 экономия топлива от применения ТН по сравнению с котельной составляет 30-5-40%, т.е. в среднем 6-5-8 кг у.т./ГДж. При увеличении м до 5, экономия топлива возрастает примерно до 20+25 кг у.т./ГДж по сравнению с котельными на органическом топливе и до 45+65 кгу.т./ГДж по сравнению с электрокотлами.

Таким образом, ТН в 1,5-5-2,5 раза выгоднее котельных. Стоимость тепла от ТН примерно в 1,5 раза ниже стоимости тепла от централизованного теплоснабжения и в 2-5-3 раза ниже угольных и мазутных котельных.

Одной из важнейших задач является утилизация тепла сбросной воды тепловых электростанций . Важнейшей предпосылкой внедрения ТН являются большие объемы тепла, выбрасываемые в градирни. Так, например, суммарная величина сбросного тепла на городских и прилегающих к Москве ТЭЦ в период с ноября по март отопительного сезона составляет 1600-5-2000 Гкал/ч. С помощью ТН можно передать большую часть этого сбросного тепла (около 50-5-60%) в теплосеть. При этом:

  • * на производство этого тепла не надо затрачивать дополнительное топливо;
  • * улучшилась бы экологическая обстановка;
  • * за счет снижения температуры циркуляционной воды в конденсаторах турбин существенно улучшится вакуум и повысится выработка электроэнергии.

Масштабы внедрения ТН только в ОАО «Мосэнерго» могут быть весьма значительны и применение их на «сбросном» тепле гради-

рен может достигать 1600-5-2000 Гкал/ч. Таким образом, применение ТН на ТЭЦ выгодно не только технологически (улучшение вакуума), но и экологически (реальная экономия топлива или повышение тепловой мощности ТЭЦ без дополнительных расходов топлива и капитальных затрат) . Все это позволит в тепловых сетях увеличить присоединенную нагрузку.

Рис.1.

1 - центробежный насос; 2 - вихревая труба; 3 - расходомер; 4 - термометр; 5 - трехходовой кран; 6 - вентиль; 7 - батарея; 8 - калорифер.

Теплоснабжение на базе автономных водяных теплогенераторов. Автономные водяные теплогенераторы (АТГ) предназначены для получения нагретой воды, которая используется для теплоснабжения различных промышленных и гражданских объектов.

АТГ включает в свой состав центробежный насос и специальное устройство, создающее гидравлическое сопротивление. Специальное устройство может иметь различную конструкцию, эффективность работы которой зависит от оптимизации режимных факторов, определяемых НОУ-ХАУ-разработками.

Одним из вариантов специального гидравлического устройства является вихревая труба, включаемая в систему децентрализованного теплоснабжения, работающая на воде .

Применение системы децентрализованного теплоснабжения весьма перспективно, т.к. вода, являясь рабочим веществом, используется непосредственно для отопления и горячего во-

доснабжения, тем самым делая эти системы экологически чистыми и надежными в эксплуатации. Такая децентрализованная система теплоснабжения была смонтирована и испытана в лаборатории Основ трансформации тепла (ОТТ) кафедры Промышленных теплоэнергетических систем (ПТС) МЭИ.

Система теплоснабжения состоит их центробежного насоса, вихревой трубы и стандартных элементов: батареи и калорифера. Указанные стандартные элементы являются неотъемлемыми частями любых систем теплоснабжения и поэтому их наличие и успешная работа дают основания утверждать о надежной работе любой системы теплоснабжения, включающей эти элементы.

На рис. 1 представлена принципиальная схема системы теплоснабжения. Система заполнена водой, которая, нагреваясь, поступает в батарею и калорифер. Система снабжена переключающей арматурой (трехходовыми кранами и вентилями), которая позволяет осуществлять последовательное и параллельное включение батареи и калорифера.

Работа системы осуществлялась следующим образом. Через расширительный бачок система заполняется водой таким образом, чтобы из системы был удален воздух, что затем контролируется по манометру. После этого на шкаф блока управления подается напряжение, задатчиком температуры устанавливается температура воды, подаваемой в систему (50-5-90 ОС), и включается центробежный насос. Время выхода на режим зависит от заданной температуры. При заданной tв=60 ОС время выхода на режим составляет t=40 мин. Температурный график работы системы представлен на рис. 2.

Пусковой период системы составил 40+45 мин. Темп повышения температуры составил Q=1,5 град/мин.

Для измерения температуры воды на входе и выходе из системы установлены термометры 4, а для определения расхода - расходомер 3.

Центробежный насос был установлен на легкой передвижной подставке, изготовление которой можно осуществить в любой мастерской. Остальное оборудование (батарея и калорифер) стандартное, приобретаются в специализированных торговых фирмах (магазинах).

Арматура (трехходовые краны, вентили, уголки, переходники и т.д.) также приобретаются в магазинах. Система смонтирована из пластиковых труб, сварка которых осуществлялась специальным сварочным агрегатом, который имеется в лаборатории ОТТ.

Разность температур воды в прямой и обратной магистралях составила примерно 2 ОС (Дt=tnp-to6=1,6). Время работы центробежного насоса ВТГ составляло в каждом цикле 98 с, паузы длились по 82 с, время одного цикла равнялось 3 мин.

Система теплоснабжения, как показали испытания, работает устойчиво и в автоматическом режиме (без участия обслуживающего персонала) поддерживает первоначально заданную температуру в интервале t=60-61 ОС.

Система теплоснабжения работала при последовательном по воде включении батареи и калорифера.

Эффективность системы оценивается:

1. Коэффициентом трансформации тепла

м=(П6+Пк)/нн=УП/нн;

Из энергетического баланса системы видно, что дополнительное количество теплоты, выработанное системой, составляло 2096,8 ккал. На сегодняшний день существуют различные гипотезы, пытающиеся объяснить, как появляется дополнительное количество теплоты, но однозначного общепризнанного решения нет.

Выводы

децентрализованный теплоснабжение нетрадиционный энергетика

  • 1. Децентрализованные системы теплоснабжения не требуют протяженных теплотрасс, а следовательно - больших капитальных затрат.
  • 2. Использование децентрализованных систем теплоснабжения позволяет существенно сократить вредные выбросы от сгорания топлива в атмосферу, что улучшает экологическую обстановку.
  • 3. Использование тепловых насосов в системах децентрализованного теплоснабжения для объектов промышленного и гражданского секторов позволяет по сравнению с котельными экономить топливо в количестве 6+8 кг у.т. на 1 Гкал выработанного тепла, что составляет примерно 30-5-40%.
  • 4. Децентрализованные системы на базе ТН успешно применяются во многих зарубежных странах (США, Япония, Норвегия, Швеция и др.). Изготовлением ТН занимаются более 30 фирм.
  • 5. В лаборатории ОТТ кафедры ПТС МЭИ смонтирована автономная (децентрализованная) система теплоснабжения на базе центробежного водяного теплогенератора.

Система работает в автоматическом режиме, поддерживая температуру воды в подающей магистрали в любом заданном интервале от 60 до 90 ОС.

Коэффициент трансформации тепла системы составляет м=1,5-5-2, а КПД равен около 25%.

6. Дальнейшее повышение энергетической эффективности децентрализованных систем теплоснабжения требует проведения научно-технических исследований с целью определения оптимальных режимов работы.

Литература

  • 1. Соколов Е. Я. и др. Прохладное отношение к теплу. Известия от 17.06.1987.
  • 2. Михельсон В. А. О динамическом отоплении. Прикладная физика. Т.III, вып. З-4, 1926.
  • 3. Янтовский Е.И., Пустовалов Ю.В. Парокомпрессионные теплонасосные установки. - М.: Энергоиздат, 1982.
  • 4. Везиришвили О.Ш., Меладзе Н. В. Энергосберегающие теплонасосные системы тепло- и хладоснабжения. - М.: Издательство МЭИ, 1994.
  • 5. Мартынов А. В., Петраков Г. Н. Двухцелевой тепловой насос. Промышленная энергетика № 12, 1994.
  • 6. Мартынов А. В., Яворовский Ю. В. Использование ВЭР на предприятиях химической промышленности на базе ТНУ. Химическая промышленность
  • 7. Бродянский В.М. и др. Эксергетический метод и его приложения. - М.: Энергоиздат, 1986.
  • 8. Соколов Е.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения - М.: Энергоиздат, 1981.
  • 9. Мартынов А.В. Установки для трансформации тепла и охлаждения. - М.: Энергоатомиздат, 1989.
  • 10. ДевянинД.Н., ПищиковС.И., Соколов Ю.Н. Тепловые насосы - разработка и испытание на ТЭЦ-28. // «Новости теплоснабжения», № 1, 2000.
  • 11. Мартынов А.В., Бродянский В.М. «Что такое вихревая труба?». М.: Энергия, 1976.
  • 12. Калиниченко А.Б., Куртик Ф.А. Теплогенератор с самым высоким КПД. // «Экономика и производство», № 12, 1998.
  • 13. Мартынов А.В., Янов А.В., Головко В.М. Система децентрализованного теплоснабжения на базе автономного теплогенератора. // «Строительные материалы, оборудование, технологии 21 века», № 11, 2003.

Перспективы развития децентрализованного

теплоснабжения

Развитие рыночных отношений в России коренным образом меняет принципиальные подходы к выработке и потреблению всех видов энергии. В условиях постоянного роста цен на энергоресурсы и их неизбежного сближения с мировыми ценами проблема энергосбережения становится по настоящему актуальной, во многом определяющей будущее отечественной экономике.

Вопросы разработке энергосберегающих технологий и оборудования всегда занимали значительное место в теоретических и прикладных исследованиях наших учёных и инженеров, но на практике в энергетику передовые технические решения внедрялись не достаточно активно. Государственная система искусственно заниженных цен на топливо (уголь, мазут, газ) и ложные представления о неограниченных запасах дешёвого, природного топлива в российских недрах привели к тому, что отечественная промышленная продукция является в настоящее время одной из самых энергоёмких в мире, а наше ЖКХ экономически убыточным и технически отсталым.

Малая энергетика ЖКХ оказалась заложницей большой энергетики. Ранее принятые коньюктурные решения о закрытии малых котельных (под предлогом их низкой эффективности, технической и экологической опасности) сегодня обернулись сверх централизацией теплоснабжения, когда горячая вода проходит от ТЭЦ до потребителя путь в 25-30 км, когда отключение источника тепла из-за неплатежей или аварийной ситуации приводит к замерзанию городов с миллионным населением.

Большинство индустриально развитых стран шло другим путем: совершенствовали теплогенерирующее оборудование повышая уровень его безопасности и автоматизации, КПД газогорелочных устройств, санитарно гигиенические, экологические, эргономические и эстетические показатели; создали всеобъемлющую систему учёта энергоресурсов всеми потребителями; приводили нормативно-техническую базу в соответствие с требованиями целесообразности и удобства потребителя; оптимизировали уровень централизации теплоснабжения; перешли к широкому внедрению

альтернативных источников тепловой энергии. Результатом такой работы стало реальное энергосбережение во всех сферах экономике, включая ЖКХ.

Наша страна находится в начале сложного пути преобразования ЖКХ, которое потребует проведения в жизнь многих непопулярных решений. Энергосбережение является магистральным направлением развития малой энергетики, движение по которому способно значительно смягчить болезненные для большей части населения последствия от роста цен на коммунальные услуги.

Постепенное увеличение доли децентрализованного теплоснабжения, максимальная приближения источника тепла к потребителю, учёт потребителем всех видов энергоресурсов позволят не только создать потребителю более комфортные условия, но и обеспечить реальную экономию газового топлива.

Традиционное для нашей страны система централизованного снабжения теплом через ТЭЦ и магистральные теплопроводы, известна и обладает рядом достоинств. В общем, объеме источников тепловой энергии на централизованные котельные приходится 68% , децентрализованные –28%, прочие –3% . Крупными теплофикационными системами вырабатывается около 1,5млрд.Гкал в год, из них 47% на твердом топливе,41% на газе, 12% на жидком топливе. Объемы производства тепловой энергии имеют тенденцию к росту примерно на 2-3% в год (доклад зам. министра энергетики РФ). Но в условиях перехода к новым хозяйственным механизмам, известной экономической нестабильности и слабости межрегиональных, межведомственных связей, многие из достоинств системы централизованного теплоснабжения оборачиваются недостатками.

Главным из которых является протяженность теплотрасс. Cсогласно сводным данным по объектам теплоснабжения 89 регионов РФ, суммарная протяженность тепловых сетей в двухтрубном исчислении составляет 183,3 млн.км. Cредний процент изношенности оценивается в 60-70% . Удельная повреждаемость теплопроводов в настоящее время выросла до 200 зарегистрированных повреждений в год на 100 км тепловых сетей. По экстренной оценке не менее 15% тепловых сетей требуют безотлагательной замены. Чтобы прервать процесс старения тепловых сетей и остановить их средний возраст на существующем сейчас уровне, необходимо ежегодно перекладывать порядка 4% трубопроводов, что составляет около 7300 км сетей в двухтрубном исчислении.Это потребует выделения примерно 40 млрд. . руб. в текущих ценах (доклад зам. министра РФ) .В дополнению к этому, за последние 10 лет в результате недофинансирования практически не обновлялся основной фонд отрасли. Вследствие этого, потери теплоэнергии при производстве, транспортировке и потреблении достигли 70%, что привело к низкому качеству теплоснабжения при высоких затратах.

Организационная структура взаимодействия потребителей и теплоснабжающих предприятий не стимулирует последних к экономии энергетических ресурсов. Система тарифов и дотаций не отражает реальных затрат на теплоснабжение.

В целом, критическое положение, в котором оказалась отрасль, предполагает в ближайшем будущем возникновение крупномасштабной кризисной ситуации в сфере теплоснабжения для разрешения которой потребуются колоссальные финансовые вложения.

Насущный вопрос времени – разумная децентрализация теплоснабжения, по квартирное теплоснабжение. Децентрализация теплоснабжения (ДТ) – наиболее радикальный, эффективный и дешёвый способ устранения многих недостатков. Обоснованное применения ДТ в сочетании с энергосберегающими мероприятиями при строительстве и реконструкции зданий даст большую экономию энергоресурсов в России. Вот уже четверть века в наиболее развитых странах не строят квартальных и районных котельных. В сложившихся сложных условиях единственным выходом является создание и развитие системы ДТ за счёт применения автономных тепло источников.

По квартирное теплоснабжение – это автономное обеспечение теплом и горячей водой индивидуального дома или отдельной квартиры в многоэтажном здании. Основными элементами таких автономных систем является: теплогенераторы – отопительные приборы, трубопроводы отопления и горячего водоснабжения, системы подачи топлива, воздуха и дымоудаления.

Сегодня разработаны и серийно выпускаются модульные котельные установки, предназначенные для организации автономного ДТ. Блочно-модульный принцип построения обеспечивает возможность простого построения котельной необходимой мощности. Отсутствие необходимости прокладки теплотрасс и строительства здания котельной снижают стоимость коммуникаций и позволяют существенно повысить темпы нового строительства. Кроме того, это дает возможность использовать такие котельные для оперативного обеспечения теплоснабжения в условиях аварийных и чрезвычайных ситуаций в период отопительного сизона.

Блочные котельные представляют собой полностью функционально законченное изделие, оснащены всеми необходимыми приборами автоматики и безопасности. Уровень автоматизации обеспечивает бесперебойную работу всего оборудования без постоянного присутствия оператора.

Автоматика отслеживает потребность объекта в тепле в зависимости от погодных условий и самостоятельно регулирует работу всех систем для обеспечения заданных режимов. Этим достигается более качественное соблюдение теплового графика и дополнительная экономия топлива. В случае возникновения нештатных ситуаций, утечек газа, система безопасности автоматически прекращает подачу газа и предотвращает возможность аварий.

Многие предприятия, сориентировавшиеся к сегодняшним условиям и просчитав экономическую выгоду, уходят от централизованного теплоснабжения, от отдалённых и энергоёмких котельных.

ОАО *Левокумскрайгаз* имело энергоёмкую котельную с четырьмя котлами «Универсал-5» балансовой стоимостью в 750 тыс. рублей, теплотрассу общей протяжённостью 220 метров и стоимостью 150тыс. рублей (рис. 1).

Ежегодные затраты на ремонт и поддержания котельной, системы отопления в исправном состоянии составляли 50 тыс. рублей. В течении отопительного периода 2001-2002г затраты на содержания обслуживающего персонала

(80т.р.), электроэнергию (90т.р.), воду(12т.р.), газ(130т.р.), автоматику безопасности (8 т.р.) и пр. (30 т.р.) составили 340 т.р.

В 2002 году райгазом была демонтирована центральная котельная, и были установлены в административном 3-х этажном корпусе (общей отапливаемой площадью 1800кв.м), два 100-киловатных отопительных бытовых котла Зеленокумского сельмаша и в производственном корпусе (500кв.м) установлено два бытовых котла (Дон-20) для отопления и горячего водоснабжения.

Реконструкция обошлась предприятию в 80 тыс. р. Затраты на газ, электроэнергию, воду, зарплата одному оператору составили за отопительный период 110т.р.

Доходы от продажи высвободившегося оборудования составили 90т.р, а именно:

ШГРП (шкафной газорегуляторный пункт) -- 20 т.р

4 котла «Универсал» -- 30 т.р

два центробежных насоса -- 10 т.р

автоматика безопасности котлов -- 20 т.р

электрооборудование, запорная арматура и пр. -- 10 т.р

Здание котельной было переоборудовано в мастерские.

Отопительный период 2002-2003 гг. прошел успешно и гораздо менее затратно, чем предыдущие.

Экономический эффект от перехода ОАО «Левокумскрайгаз» на автономное теплоснабжение составил ориентировочно в год 280 тыс. р., а продажа демонтированного оборудования покрыла затраты по реконструкции.

Другой пример.

В с. Левокумском имеется котельная, которая обеспечивает теплом и горячей водой поликлинику и инфекционный корпус Левокумского ТМО, находящаяся на балансе Левокумских теплосетей (рис. 2). Стоимость котельной 414 тыс.р., стоимость теплотрасс 230тыс. р. Протяжённость теплотрасс составляет около 500 м. Из-за длительной эксплуатации и изношенности сетей ежегодно идут большие потери тепла в теплотрассах. Затраты на ремонт сетей в 2002 г. составили около 60 т.р. Затраты, сложившиеся в отопительный период


VIII. Использование возобновляемых энергоресурсов

По всей территории России зимой приходится обеспечивать подогрев воздуха в помещениях, где живут или работают люди. Оборудование для этих целей стоит колоссальные деньги. Естественной является жесткая конкуренция на рынке отопительного оборудования, а так как выбор лозунгов не очень велик, все говорят одно и то же: цена, качество, экология и энергосбережение. Иногда борьба за рынок напоминает информационную войну, в которой стороны говорят прямо противоположные вещи, не слушая друг друга.

С первой волны демократии к нам пришла эйфория крышных котельных, потом поквартирного отопления, а сейчас модно обсуждать мини-ТЭЦ.

Достойную конкуренцию пропагандистам децентрализации составляют производители ИТП и трубопроводов в ППУ изоляции.

Плохо то, что на чью-то сторону позволяют себе становиться политики и представители власти.

У централизованных систем теплоснабжения есть всего 5, но неоспоримых преимуществ:

  • - вывод взрывоопасного технологического оборудования из жилых домов;
  • - точечная концентрация вредных выбросов на источниках, где с ними можно эффективно бороться;
  • - возможность работы на разных видах топлива, включая местное, мусоре, а также возобновляемых энергоресурсах;
  • - возможность замещать простое сжигание топлива (при температуре 1500-2000 °С для подогрева воздуха до 20 °С) тепловыми отходами производственных циклов, в первую очередь теплового цикла производства электроэнергии на ТЭЦ;
  • - относительно гораздо более высокий электрический КПД крупных ТЭЦ и тепловой КПД крупных котельных работающих на твердом топливе.

За исключением, в некоторых случаях варианта применения тепловых насосов, все остальные способы децентрализованного теплоснабжения не могут обеспечить такой комплекс преимуществ.

Критерием отказа от централизации является удельная стоимость системы ЦТ, которая в свою очередь зависит от плотности нагрузки. В Дании централизованные системы теплоснабжения оправданы при удельной нагрузке от 30 Гкал/км 2 , при нашем климате желательна большая плотность нагрузки.

Более правильно оценивать перспективность ЦТ через удельную материальную характеристику системы ЦТ равную произведению общей длины сети на средний диаметр, поделенному на суммарною присоединенную нагрузку (L сети × D ср / Q системы)

В Москве удельная материальная характеристика равна примерно 30. В некоторых городах доходит до 80. В поселениях или отдельных районах городов с удельной характеристикой больше 100 централизация противопоказания - небольшие доходы от реализации тепла при значительных капитальных затратах делают ЦТ неконкурентоспособным.

Конечно, эти подходы применимы при теплоснабжении от ТЭЦ. У крупных котельных нет будущего, с другой стороны, наличие системы тепловых сетей от крупной котельной позволяет инициировать проект строительства новой ТЭЦ. Именно отсутствие крупных тепловых сетей сдерживает реализацию в западных странах Европейской директивы о развитии когенерации.

Почему же в России децентрализованные системы теплоснабжения стали появляться и в крупных городах с развитым ЦТ:

  • - низкое качество централизованного теплоснабжения в 90-е года ХХ в.;
  • - завышение стоимости тепла в некоторых городах;
  • - сложный, дорогой, забюрократизированный порядок подключения к ЦТ;
  • - отсутствие возможности регулирования объемов потребления;
  • - невозможность жителям самостоятельно регулировать включение и отключение отопления;
  • - длительный срок летних отключений ГВС.

С точки зрения энергоэффективности обычно называются фантастически завышенные потери в тепловых сетях без учета тех факторов, что при называемых потерях системы ЦТ вообще не смогла бы работать и тепловые потери в системе от ТЭЦ приводят к значительно меньшим удельным потерям топлива.

Строительство новых децентрализованных источников на территории, охваченной системой ЦТ, не позволяет повысить ее удельную материальную характеристику, т.е. сдержать рост тарифов. Любая крышная котельная в зоне ЦТ - это удар по социалке. Хотя с другой стороны децентрализация некоторых районов с неплотной застройкой может оказаться чрезвычайно полезной. Надо, конечно, учитывать и роль децентрализации как конкурентного фактора для предприятий ЦТ.

В последние годы повышение качества работы предприятий ЦТ привело к снижению объемов строительства локальных источников в крупных городах.

  • Домовые котельные в жилом секторе

В 90-е годы ХХ в. при плохом централизованном теплоснабжении наличие собственной котельной повышало привлекательность и стоимость жилья, сейчас ситуация изменилась в обратную сторону - наличие во дворе дома котельной с относительно невысокой трубой воспринимается покупателями квартир в крупных городах негативно.

В зонах неплотной застройки локальные источники - объективная необходимость и они составляют конкуренцию вариантам поквартирного отопления.

Отдельно надо сказать об опыте применений крышных котельных. К основным проблемам относятся:

  • - отсутствие внятного собственника, т.к. котельная является коллективной собственностью жителей;
  • - не начисление амортизации и длительной срок сбора средств на необходимые крупные ремонты;
  • - видимый дым над зданием в холодную погоду с соответствующей индустриализацией пейзажа;
  • - отсутствие системы быстрой поставки запасных частей.

Встречаются случаи повышенной вибрации; выхода из строя котлов из-за повышенной подпитки и образования накипи; отсутствие возможности замены котла без вертолета; отключения по газу как из-за аварий на газопроводах, так и из-за срабатывания автоматики котельных при снижении давления газа в холодную погоду.

В зонах неплотной застройки, где оптимально развито децентрализованное теплоснабжение обычно нет проблем с местом для размещения котельной, соответственно нет смысла ставить ее в буквальном смысле людям на голову.

  • Поквартирное отопление

«Поквартирка» пришла к нам их теплых стран. Только в Италии 14 млн. квартир имеет поквартирное отопление. Но при итальянском климате централизация теплоснабжения бессмысленна, а подъезды и подвалы отапливать не надо.

В наших климатических условиях надо отапливать все помещения здания, иначе срок его службы сокращается в разы, то есть при наличии поквартирного отопления надо иметь и общую котельную для отопления остальных помещений.

Основные проблемы поквартирного отопления (ПО):

  • Недопустимо использование ПО только в отдельных квартирах многоквартирных жилых домов. Дымоход приходится делать на стену здания, при этом продукты сгорания могут попадать в вышерасположенные квартиры.
  • Допустимо применение котлов только с закрытой камерой сгорания и выделенным воздуховодом для забора воздуха с улицы.
  • Должна быть обеспечена возможность доступа в квартиру при длительном отсутствии жильцов. Недопустимо длительное отключение котлов самими жителями в зимний период.
  • Система ПО не должна применяться в зданиях типовых серий. Здание должно быть специально спроектировано под ПО. Основные причины этого - необходимость организации эффективного дымоудаления, т.к. на одном этаже к общему дымоходу может подключаться только один котел.
  • Работа любых котлов установленных в квартирах будет периодической, т.е. в режиме включено-выключено. Это определяется тем, что мощность котла подбирается не по нагрузке отопления, а по пиковой нагрузке ГВС превышающей в несколько раз отопительную, а глубина регулирования мощности большинства котлов от 40 до 100%. Задача - избежать образования конденсата в газоходах, для этого они должны быть горизонтальными, теплоизолированными и иметь устройства сбора и нейтрализации конденсата.

Проблемы дымоудаления особенно обостряются в высотных зданиях, т.к. тяга не регулируется и меняется в больших пределах по высоте здания, а также при изменении погоды.

  • Необходимость значительной мощности квартирного котла для обеспечения максимального расхода горячей воды определяет то обстоятельство, что суммарная мощность квартирных котлов в 2-2,5 раза превышает мощность альтернативной домовой котельной.
  • Серьезной проблемой является свободный, неконтролируемый доступ к котлам детей и людей с поврежденной психикой. С другой стороны доступ специалистов для обслуживания часто бывает затруднен.
  • Срок службы котлов 15-20 лет, но в наших условиях серьезные поломки происходят гораздо быстрее. Для предупреждения накипи в теплообменниках, обеспечения длительной работы мембраны и сальников желательна установка системы фильтров грубой и тонкой очистки воды. У нас их, практически, не ставят. Объем технического обслуживания обычно определяют сами жильцы, причем имеют право от него отказаться.

Часто поквартирное отопление называют «автономным» имея в виду, что в каждой квартире создается своя независимая от других жителей система отопления и ГВС. Фактически же поквартирное отопление здания - это жестко взаимозависимая по газу, воде, дымоудалению и теплоперетокам система с распределенным сжиганием.

С точки зрения энергоэффективности эта система проигрывает варианту автоматизированной домовой газовой котельной с поквартирным учетом и регулированием из-за полного отсутствия режимного регулирования процесса сжигания.

Экономическая выгодность ПО объясняется отсутствием в расчетах амортизационных отчислений и искусственно сдерживаемой ценой на бытовой газ (в большинстве других стран цены на газ для бытового потребления в 1,5-3 раза выше цены для крупных потребителей).

Еще одна из причин - желание руководителей администраций небольших муниципальных образований полностью снять с себя ответственность за теплоснабжение, переложив ее на самих жителей. В некоторых поселениях с несколькими двух-трехэтажными домами внедрение ПО действительно оправдано, т.к. эксплуатация мелких котельных при мизерном объеме реализации оказывается слишком дорогой для жителей.

Просим Вас оставлять свои замечания и предложения по стратегии . Для чтения документа выберите интересующий Вас раздел.

Энергосберегающие технологии и методы

Ориентация российской энергетики на теплофикацию и централизованное теплоснабжение как основной способ удовлетворения тепловых потребностей городов и промышленных центров технически и экономически себя оправдали. Однако в работе систем централизованного теплоснабжения и теплофикации имеется много недостатков, неудачных технических решений, неиспользованных резервов, которые снижают экономичность и надежность функционирования таких систем . Производственный характер структуры систем централизованного теплоснабжения (СЦТ) с ТЭЦ и котельными, необоснованность масштабов подключения потребителей и практическая неуправляемость режимами работы СЦТ (источники — тепловые сети — потребители) во многом обесценили преимущества централизованного теплоснабжения.

Если источники тепловой энергии еще сопоставимы с мировым уровнем, то анализ в целом СЦТ показывает, что:

  • техническая оснащенность и уровень технологических решений при строительстве тепловых сетей соответствуют состоянию 1960-х годов, в то время как резко увеличились радиусы теплоснабжения, и произошел переход на новые типоразмеры диаметров труб;
  • качество металла теплопроводов, теплоизоляция, запорная и регулировочная арматура, конструкции и прокладка теплопроводов значительно уступает зарубежным аналогам, что приводит к большим потерям тепловой энергии в сетях;
  • плохие условия теплогидроизоляции теплопроводов и каналов тепловых сетей способствовали повышению повреждаемости подземных теплопроводов, что привело к серьезным проблемам замены оборудования тепловых сетей;
  • отечественное оборудование крупных ТЭЦ соответствует среднему зарубежному уровню 1980-х годов, и в настоящее время паротурбинные ТЭЦ характеризуются высокой аварийностью, так как практически половина установленной мощности турбин выработала расчетный ресурс;
  • на действующих угольных ТЭЦ отсутствуют системы очистки дымовых газов от NOX и SOX, а эффективность улавливания твердых частиц часто не достигает требуемых значений;
  • конкурентоспособность СЦТ на современном этапе можно обеспечить только внедрением специально новых технических решений, как по структуре систем, так и по схемам, оборудованию энергоисточников и тепловых сетей.

Кроме того, принимаемые на практике традиционные режимы работы централизованного теплоснабжения имеют следующие недостатки:

  • практическое отсутствие регулирование отпуска теплоты на отопление зданий в переходные периоды, когда особенно большое влияние на тепловой режим отапливаемых помещений оказывают ветер, солнечная радиация, бытовые тепловыделения;
  • перерасход топлива и перетоп зданий в теплые периоды отопительного сезона;
  • большие потери теплоты при его транспортировке (около 10%), а во многих случаях — намного больше;
  • нерациональный расход электроэнергии на перекачку теплоносителя, обусловленный самим принципом центрального качественного регулирования;
  • длительная эксплуатация подающих трубопроводов теплосети в неблагоприятном режиме температур, характеризующимся нарастанием коррозионных процессов и др.

Современная система децентрализованного теплоснабжения представляет сложный комплекс функционально взаимосвязанного оборудования, включающего автономную теплогенерирующую установку и инженерные системы здания (горячее водоснабжение, системы отопления и вентиляции).

В последнее время многие регионы России проявляют интерес к внедрению энергоэффективной технологии поквартирного теплоснабжения многоэтажных домов, представляющего собой вид децентрализованного теплоснабжения, при котором каждая квартира в многоквартирном доме оборудуется автономной системой обеспечения теплотой и горячей водой. Основными элементами системы поквартирного отопления являются отопительный котел, отопительные приборы, системы подачи воздуха и отвода продуктов сгорания. Разводка выполняется с применением стальной трубы или современных теплопроводных систем — пластиковых или металлопластиковых.

Объективными предпосылками внедрения автономных (децентрализованных) систем теплоснабжения является:

  • отсутствие в ряде случаев свободных мощностей на централизованных источниках;
  • уплотнение застройки городских районов объектами жилья;
  • кроме того, значительная часть застройки приходится на местности с неразвитой инженерной инфраструктурой;
  • более низкие капиталовложения и возможность поэтапного покрытия тепловых нагрузок;
  • возможность поддержания комфортных условий в квартире по своему собственному желанию, что в свою очередь является более привлекательным по сравнению с квартирами при централизованном теплоснабжении, температура в которых зависит от директивного решения о начале и окончании отопительного периода;
  • появление на рынке большого количества различных модификаций отечественных и импортных (зарубежных) теплогенераторов малой мощности.

Теплогенераторы могут размещаться на кухне, в отдельном помещении на любом этаже (в том числе чердачном или подвальном) или в пристройке. Наиболее распространенная схема автономного (децентрализованного) теплоснабжения включает в себя: одноконтурный или двухконтурный котел, циркуляционные насосы для отопления и горячего водоснабжения, обратные клапаны, закрытые расширительные баки, предохранительные клапаны. При одноконтурном котле для приготовления горячего водоснабжения применяется емкостной или пластинчатый теплообменник.

Достоинствами децентрализованного теплоснабжения являются:

  • отсутствие необходимости отводов земли под тепловые сети и котельные;
  • снижение потерь теплоты из-за отсутствия внешних тепловых сетей, снижение потерь сетевой воды, уменьшение затрат на водоподготовку;
  • значительное снижение затрат на ремонт и обслуживание оборудование;
  • полная автоматизация режимов потребления. В автономных системах теплоснабжения не рекомендуется использовать неподготовленную воду из водопровода в виду ее агрессивного воздействия на элементы котла, что вызывает необходимость в фильтрах и других устройствах водоподготовки.

Среди экспериментальных зданий, построенных в российских регионах, есть как элитные дома, так и дома массовой застройки. Квартиры в них стоят дороже аналогичного жилья с централизованным теплоснабжением. Однако уровень комфорта дает им преимущества на рынке недвижимости. Их владельцы получают возможность самостоятельно решить, сколько им нужно теплоты и горячей воды; исчезает проблема сезонных и других перебоев в теплоснабжении.

Децентрализованные системы любого вида позволяют исключить потери энергии при ее транспортировке (в результате снижается стоимость теплоты для конечного потребителя), повысить надежность систем отопления и горячего водоснабжения, вести жилищное строительство там, где нет развитых тепловых сетей. При всех этих достоинствах децентрализованного теплоснабжения имеются и негативные стороны. У мелких котельных, в том числе и «крышных», высота дымовых труб, как правило, значительно ниже, чем у крупных.

При суммарном равенстве тепловой мощности величины выбросов не изменяются, однако резко ухудшаются условия рассеивания. Кроме того, небольшие котельные располагаются, как правило, вблизи жилой зоны. В пользу централизованного теплоснабжения следует также рассматривать комбинированную выработку тепловой и электрической энергии на ТЭЦ. Дело заключается в том, что рост количества автономных котельных однозначно не приведет к снижению потребления топлива на ТЭЦ (при условии неизменной выработки электроэнергии). Это говорит о том, что в целом по городу возрастает потребление топлива, и уровень загрязнения воздушного бассейна увеличивается . При сравнении вариантов одними из основных показателей являются следующие виды затрат.

Они наглядно представлены в таблице 1. В качестве подтверждения вышеизложенного нами был произведен расчет двух вариантов систем с централизованным и децентрализованным теплоснабжением одного квартала. Рассматриваемый квартал представляет собой четыре 3-секционных 5-этажных жилых здания. На этаже каждой секции расположены по четыре квартиры общей площадью 70 м2 (Таблица ~4~). Допустим, что данный район отапливается котельной с котлами КВГМ-4 на природном газе (I — вариант). В качестве II варианта — индивидуальный газовый котел со встроенным проточным теплообменником для приготовления горячей воды. Зависимость удельной стоимости котла (DM/кВт) от установленной мощности приведена на рис. . Расчет нами был произведен в соответствии с .

При анализе зависимостей использовались данные для импортных котлов. Котлы российского производства на 20-40 % дешевле, в зависимости от фирмы производителя и фирмы посредника. При определении основных техникоэкономических показателей для децентрализованных систем теплоснабжения необходимо учитывать расходы, связанные с увеличением величины диаметров газопроводов низкого давления, так как в этом случае возрастают потери газа.

Но в этом есть положительный фактор, выступающий в пользу децентрализованного теплоснабжения: отпадает необходимость в прокладке тепловых сетей. Расчетные данные наглядно представлены на рис. 2 и 3, из которых видно, что: — годовой расход топлива при децентрализованном теплоснабжении снижается в среднем на 40-50 %; — снижаются затраты на обслуживание примерно в 2,5-3 раза; — затраты на электрическую энергию в 3 раза; — эксплуатационные расходы при децентрализованном теплоснабжении также меньше, чем при централизованном теплоснабжении.

Применение поквартирной системы теплоснабжения многоэтажных жилых домов позволяет полностью исключить потери тепла в тепловых сетях и при распределении между потребителями, и значительно снизить потери на источнике. Позволит организовать индивидуальный учет и регулирование потребления теплоты в зависимости от экономических возможностей и физиологических потребностей.

Поквартирное теплоснабжение приведет к снижению единовременных капитальных вложений и эксплуатационных затрат, а также позволяет экономить энергетические и сырьевые ресурсы на выработку тепловой энергии и как следствие этого, приводит к уменьшению нагрузки на экологическую обстановку. Поквартирная система теплоснабжения является экономически, энергетически, экологически эффективным решением вопроса теплоснабжения для многоэтажных домов. И все-таки, необходимо проводить всесторонний анализ эффективности применения той или иной системы теплоснабжения, принимая во внимание множество факторов.

По материалам 5-го Московского Международного Форума по проблемам проектирования и строительства систем отопления, вентиляции, кондиционирования воздуха и охлаждения в рамках международной выставки HEAT&VENT’2003 MOSCOW (стр. 95-100), Издатель ITE Group PLC, под редакцией профессора, к.т.н. Махова Л. М., 2003 г.

бифилярный теплоснабжение централизованный теплосеть

Трубопроводы тепловых сетей прокладываются в подземных проходных и непроходных каналах - 84%, бесканальная подземная прокладка - 6% и надземная (на эстакадах) - 10%. В среднем по стране свыше 12% тепловых сетей периодически или постоянно затапливаются грунтовыми или поверхностными водами, в отдельных городах эта цифра может достигать 70% теплотрасс. Неудовлетворительное состояние тепловой и гидравлической изоляции трубопроводов, износ и низкое качество монтажа и эксплуатации оборудования тепловых сетей отражается статистическими данными по аварийности. Так, 90% аварийных отказов приходится на подающие и 10% - на обратные трубопроводы, из них 65% аварий происходит из-за наружной коррозии и 15% - из-за дефектов монтажа (преимущественно разрывов сварных швов).

На этом фоне всё увереннее позиции децентрализованного теплоснабжения, к которому следует отнести как поквартирные системы отопления и горячего водоснабжения, так и домовые, включая многоэтажные здания с крышной или пристроенной автономной котельной. Использование децентрализации позволяет лучше адаптировать систему теплоснабжения к условиям потребления теплоты конкретного, обслуживаемого ей объекта, а отсутствие внешних распределительных сетей практически исключает непроизводственные потери теплоты при транспорте теплоносителя. Повышенный интерес к автономным источникам теплоты (и системам) в последние годы в значительной степени обусловлен финансовым состоянием и инвестиционно-кредитной политикой в стране, так как строительство централизованной системы теплоснабжения требует от инвестора значительных единовременных капитальных вложений в источник, тепловые сети и внутренние системы здания, причем с неопределенными сроком окупаемости или практически на безвозвратной основе. При децентрализации возможно достичь не только снижения капитальных вложений за счет отсутствия тепловых сетей, но и переложить расходы на стоимость жилья (т.е. на потребителя). Именно этот фактор в последнее время и обусловил повышенный интерес к децентрализованным системам теплоснабжения для объектов нового строительства жилья. Организация автономного теплоснабжения позволяет осуществить реконструкцию объектов в городских районах старой и плотной застройки при отсутствии свободных мощностей в централизованных системах. Децентрализация на современном уровне, базирующаяся на высокоэффективных теплогенераторах последних поколений (включая конденсационные котлы), с использованием энергосберегающих систем автоматического управления позволяет в полной мере удовлетворить запросы самого требовательного потребителя.

Перечисленные факторы, в пользу децентрализации теплоснабжения привели к тому, что часто оно уже стало рассматриваться как безальтернативное техническое решение лишенное недостатков.

Важным преимуществом децентрализованных систем является возможность местного регулирования в системах квартирного отопления и горячего водоснабжения. Однако, эксплуатация источника теплоты и всего комплекса вспомогательного оборудования квартирной системы теплоснабжения непрофессиональным персоналом (жильцами) не всегда дает возможность в полной мере использовать это преимущество. Также необходимо учитывать, что в любом случае требуется создание, или привлечение, ремонтно-эксплуатационной организации для обслуживания источников теплоснабжения.

Рациональной можно признать децентрализацию только на основе газообразного (природный газ) или легкого дистиллятного жидкого топлива (дизтопливо, топливо печное бытовое). Другие энергоносители:

Твердое топливо в многоэтажной застройке. По ряду очевидных причин нереализуемая задача. В малоэтажной застройке, как показывают многие исследования на низкосортном рядовом твердом топливе (а сейчас другого в стране практически нет) экономически целесообразно строить групповую котельную;

Сжиженный газ (пропан-бутановые смеси) для районов с большим потреблением тепла на цели отопления, даже в комплексе с энергосберегающими мероприятиями потребует строительства газохранилищ большой ёмкости (с обязательной установкой не менее двух подземных ёмкостей), что в комплексе вопросов с централизованной поставкой сжиженного газа существенно усложняет проблему;

Электроэнергия не может и не должна использоваться на цели отопления (независимо от себестоимости и тарифов) в силу эффективности её выработки по первичной энергии для конечного потребителя (КПД30%) за исключением систем временного, аварийного, локального отопления (местного) и в районах её избытков, в ряде случаев использования альтернативных источников энергии (тепловые насосы). В этой же связи необходимо отмежеваться от безответственных заявлений в печати ряда разработчиков и производителей так называемых вихревых теплогенераторов, декларирующих тепловую эффективность устройств, работающих на вязкостной диссипации механической энергии (от электродвигателя) в 1,25 раза превосходящую установленную мощность электрооборудования.

Установочная мощность источников теплоты при поквартирном теплоснабжении в многоэтажном здании рассчитывается по максимуму (пику) теплопотребления, т.е. по нагрузке горячего водоснабжения. Нетрудно видеть, что в этом случае для двухсот квартирного жилого здания установленная мощность теплогенераторов составит 4,8 МВт, что более чем в два раза превышает необходимую суммарную мощность теплоснабжения при подключении к центральным тепловым сетям или к автономной, например, крышной котельной. Установка емкостных водонагревателей в системе горячего водоснабжения квартиры (емкость 100-150 литров) позволяет снизить установленную мощность поквартирных теплогенераторов, однако существенно усложняет квартирную систему теплоснабжения, значительно увеличивает её стоимость и практически не применяется в многоэтажных зданиях.

Автономные источники теплоснабжения (в том числе и поквартирные) имеют рассредоточенный в жилом районе выброс продуктов сгорания при относительно низкой высоте дымовых труб, что оказывает существенное влияние на экологическую обстановку, загрязняя воздух непосредственно в селитебной зоне.

Существенно меньше проблем возникает при разработке децентрализованных систем теплоснабжения от автономных (крышных), встроенных и пристроенных котельных отдельных объектов жилого, коммунально-бытового и промышленного назначения, в том числе и типовых сооружений. Достаточно чёткая нормативная документация позволяет технически обосновать эффективное решение вопросов размещения оборудования, топливоснабжения, дымоудаления, электроснабжения и автоматизации автономного источника теплоты. Не встречает особых трудностей и разработка инженерных систем здания, включая типовые, по своей конструкции

Таким образом, автономное теплоснабжение не должно рассматриваться как безусловная альтернатива централизованному теплоснабжению, или как отступление от завоёванных позиций. Технический уровень современного энергосберегающего оборудования по выработке, технологии транспорта и распределения теплоты позволяют создавать эффективные и рациональные инженерные системы, уровень централизации которых должен иметь соответствующее обоснование.